论文:2023,Vol:41,Issue(1):65-72
引用本文:
何宇鑫, 马玉娥. 高温下TC4合金的黏塑性本构模型研究[J]. 西北工业大学学报
HE Yuxin, MA Yu'e. The viscoplastic constitutive model of TC4 alloy under high temperature[J]. Journal of Northwestern Polytechnical University

高温下TC4合金的黏塑性本构模型研究
何宇鑫, 马玉娥
西北工业大学 航空学院, 陕西 西安 710072
摘要:
TC4合金广泛应用于高温环境下,基于TC4合金的单轴蠕变试验和高温拉伸试验研究了其高温下的黏塑性本构模型。提出一种不统一的考虑损伤的黏塑性本构模型,将非弹性应变分解为蠕变应变和塑性应变两部分,蠕变应变采用多轴延性耗竭模型计算,塑性应变通过考虑损伤和随动硬化的屈服函数计算,并推导了该模型的有限元隐式积分算法和一致切向模量。使用遗传算法确定了该模型所需的材料参数,通过Abaqus有限元软件的UMAT子程序将该模型进行编程并采用三维八节点等参单元进行计算。由计算结果可知,该模型可以有效地预测TC4合金蠕变曲线的3个阶段以及高温拉伸过程中的软化阶段。
关键词:    TC4合金    蠕变    高温拉伸    黏塑性本构模型    隐式积分算法   
The viscoplastic constitutive model of TC4 alloy under high temperature
HE Yuxin, MA Yu'e
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
TC4 alloy is widely used in the high temperature environment. This paper proposed an ununified viscoplastic constitutive model according to the uniaxial creep experiment and high temperature tensile experiment of TC4 alloy. The inelastic strain rate was decomposed into two parts: creep strain rate and plastic strain rate. The creep strain was calculated by multiaxial ductility exhaustion creep damage law, and the plastic strain was get from the yield function containing the damage and the kinematic hardening effect. The implicit stress integration algorithm and the consistent tangent modulus of this model were derived. The material constants of the proposed model were determined by using genetic algorithm. The proposed constitutive model was compiled in a UMAT subroutine of finite element software Abaqus and 3D eight nodes isoparametric brick element was employed to simulate the creep and the tensile behavior of TC4 alloy. Form the result, the proposed constitutive model can predict the three stages of creep curves and the softening stage of tensile curves accurately.
Key words:    TC4 alloy    creep    high temperature tension    viscoplastic constitutive model    implicit stress integration algorithm   
收稿日期: 2022-05-18     修回日期:
DOI: 10.1051/jnwpu/20234110065
基金项目: 国家自然科学基金(91860128)资助
通讯作者: 马玉娥(1975-),西北工业大学教授,主要从事疲劳与断裂研究。e-mail:ma.yu.e@nwpu.edu.cn     Email:ma.yu.e@nwpu.edu.cn
作者简介: 何宇鑫(1992-),西北工业大学博士研究生,主要从事高温疲劳和蠕变断裂研究。
相关功能
PDF(2350KB) Free
打印本文
把本文推荐给朋友
作者相关文章
何宇鑫  在本刊中的所有文章
马玉娥  在本刊中的所有文章

参考文献:
[1] JORGE Ayllón Perez, VALENTÍN Miguel Eguía, JUANA Coello Sobrino, et al. Experimental results and constitutive model of the mechanical behavior of Ti6Al4V alloy at high temperature[J]. Procedia Manufacturing,2019,41:723-730
[2] CHENG Wenyu, JOSE Outeiro, JEAN-PHILIPPE Costes, et al. A constitutive model for Ti6Al4V considering the state of stress and strain rate effects[J]. Mechanics of Materials, 2019, 137:1-17
[3] PAUL M Souza, JOSEBA Mendiguren, QI Chao, et al. A microstructural based constitutive approach for simulating hot deformation of Ti6Al4V alloy in the α+β phase region[J]. Materials Science & Engineering A,2019,748:30-37
[4] WOJCIECH Mocko, ADAM Brodecki. Application of optical field analysis of tensile tests for calibration of the Rusinek-Klepaczko constitutive relation of Ti6Al4V titanium alloy[J]. Materials & Design,2015,88:320-330
[5] CEN Liu, SAURAV Goel, IÑIGO Llavori, et al. Benchmarking of several material constitutive models for tribology, wear, and other mechanical deformation simulations of Ti6Al4V[J]. Journal of the Mechanical Behavior of Biomedical Materials,2019,97:126-137
[6] PAUL M Souza, HOSSEIN Beladi, RAJKUMAR Singh, et al. Constitutive analysis of hot deformation behavior of a Ti6Al4V alloy using physical based model[J]. Materials Science & Engineering A,2015,648:265-273
[7] MARIEM Yaich, ADINEL Gavrus. New phenomenological material constitutive models for the description of the Ti6Al4V titanium alloy behavior under static and dynamic loadings[J]. Procedia Manufacturing,2020,47:1469-1503
[8] DUCOBU F, RIVIōRE-LORPHōVRE E, FILIPPI E. Material constitutive model and chip separation criterion influence on the modeling of Ti6Al4V machining with experimental validation in strictly orthogonal cutting condition[J]. International Journal of Mechanical Sciences,2016,107:136-149
[9] CAO T S, GACHET J M, MONTMITONNET P. A Lode-dependent enhanced Lemaitre model for ductile fracture prediction at low stress triaxiality[J]. Engineering Fracture Mechanics, 2014, 124:124-125
[10] SOYARSLAN C, RICHTER H, BARGMANN S. Variants of Lemaitre's damage model and their use in formability prediction of metallic materials[J]. Mechanics of Materials, 2016, 92:58-79
[11] MICHELE Pettinà, FARID Biglari. Modelling damage and creep crack growth in structural ceramics at ultra-high temperatures[J]. Journal of the European Ceramic Society, 2014 (34):2799-2805
[12] 周广磊, 徐涛. 基于温度-应力耦合作用的岩石时效蠕变模型[J]. 工程力学, 2017, 34(10):1-10 ZHOU Guanglei, XU Tao. A time-dependent thermo-mechanical creep model of rock[J]. Engineering Mechanics, 2017, 34(10):1-10 (in Chinese)
[13] HE J Z, WANG G Z. Characterization of 3-D creep constraint and creep crack growth rate in test specimens in ASTM-E1457 standard[J]. Engineering Fracture Mechanics, 2016(168):131-146
[14] ZHANG Yucai, JIANG Wenchun. Creep crack growth behavior analysis of the 9Cr-1Mo steel by a modified creep-damage model[J]. Materials Science & Engineering A, 2017(708):68-76
[15] 何宇鑫, 马玉娥, 曹瑞. 复杂应力下TC11蠕变损伤及裂纹扩展研究[J]. 西北工业大学学报, 2021, 39(1):9-16 HE Yuxin, MA Yu'e, CAO Rui. Study on creep damage and crack growth for TC11 under complex stress loading[J]. Journal of Northwestern Polytechnical University, 2021, 39(1):9-16 (in Chinese)
[16] LEMAITRE J, DESMORAT R. Engineering damage mechanics:ductile, creep, fatigue and brittle failures[M]. Heidelberg:Springer-Verlag, 2005
[17] DUNNE Fionn. Introduction to computational plasticity[M]. Oxford:Oxford University Press, 2005
[18] WEN Jianfeng, TU Shantung. A multiaxial creep-damage model for creep crack growth considering cavity growth and microcrack interaction[J]. Engineering Fracture Mechanics, 2014, 123:197-210
[19] SIMOJ C, HUGHES T J R. Computational Inelasticity[M]. New York:Springer, 1997
[20] HE Yuxin, MA Yu'e, ZHANG Weihong, et al. Effects of build direction on thermal exposure and creep performance of SLM Ti6Al4V titanium alloy[J]. Engineering Failure Analysis, 2022,135:106063