论文:2023,Vol:41,Issue(1):28-38
引用本文:
张煜, 白俊强, 屈峰. 低马赫数通用飞机翼型压力分布设计特点研究[J]. 西北工业大学学报
ZHANG Yu, BAI Junqiang, QU Feng. Study on design characteristics of airfoil pressure distribution for low Mach number general aircraft[J]. Journal of Northwestern Polytechnical University

低马赫数通用飞机翼型压力分布设计特点研究
张煜1, 白俊强1,2, 屈峰1
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 西北工业大学 无人系统技术研究院, 陕西 西安 710072
摘要:
对低马赫数通用飞机气动设计中可能存在的问题进行了研究和总结,讨论分析了部分相关翼型的压力分布形态的设计特点,并通过多工况层流翼型设计实例验证了部分翼型设计理念。对低马赫数通用飞机气动设计存在零升阻力较大、失速性能要求较高、雷诺数变化范围较大等问题进行了讨论分析。为了解决这些问题,对若干低马赫数通用飞机的湍流翼型和层流翼型的压力分布形态进行了研究,提取部分对翼型气动性能有利的设计特点。以GAW-1翼型为基准,提取某型单发涡桨式轻型多用途通用飞机的典型设计工况,进行了考虑巡航、爬升和失速的多工况层流翼型优化设计。设计结果巡航升阻比提升了9.6,爬升升阻比提升了16.3,但失速最大升力系数减小了0.115。研究结果表明:考虑巡航、爬升和失速的多工况层流翼型设计需求较为矛盾,设计人员应基于低马赫数通用飞机构型特点仔细权衡和取舍。
关键词:    通用飞机    气动设计    压力分布    层流翼型    湍流翼型    翼型设计   
Study on design characteristics of airfoil pressure distribution for low Mach number general aircraft
ZHANG Yu1, BAI Junqiang1,2, QU Feng1
1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
This paper studies several problems that may exist in the aerodynamic design of low Mach number general aircraft, and discusses the design characteristics of the pressure distribution of some related airfoils while part of the characteristics is verified by a multi-point laminar airfoil design case. Firstly, several issues which exist in the aerodynamic design of low Mach number general aircraft, such as relatively large zero-lift drag coefficient, high stall performance requirements, and large variation range of Reynolds number, are discussed and analyzed. Then, to address these issues, the paper extracts some useful design features that are beneficial to the airfoil aerodynamic performance from the study on the design characteristics of the pressure distribution of several turbulent flow airfoils and laminar flow airfoils that are designed for low Mach number general aircraft. Finally, by considering the typical design conditions of a light multi-purpose single-turboprop-engine general aircraft, including the cruise, climb and stall conditions, a multi-point laminar airfoil optimization is offered by using the GAW-1 airfoil as the baseline. The optimized foil has a 9.6 improvement in the lift-to-drag ratio of the cruise condition, a 16.3 improvement in the lift-to-drag ratio of the climb condition but a 0.115 decrease in the maximum lift coefficient of the stall condition. The results show that the requirements from the cruise, climb and stall conditions are contradictory to some degree in the considering multi-point optimization case, and the designers should deal with this trade-off carefully based on the features of the low Mach number general aircraft.
Key words:    general aircraft    aerodynamic design    pressure distribution    laminar flow airfoil    turbulent flow airfoil    airfoil design   
收稿日期: 2022-05-19     修回日期:
DOI: 10.1051/jnwpu/20234110028
基金项目: 国家自然科学基金(11972308,11902265)资助
通讯作者: 白俊强(1970-),西北工业大学教授,主要从事飞行器设计、计算流体力学和飞机综合应用研究。e-mail:junqiang@nwpu.edu.cn     Email:junqiang@nwpu.edu.cn
作者简介: 张煜(1993-),西北工业大学博士研究生,主要从事飞行器气动外形优化设计和多学科优化设计研究。
相关功能
PDF(4320KB) Free
打印本文
把本文推荐给朋友
作者相关文章
张煜  在本刊中的所有文章
白俊强  在本刊中的所有文章
屈峰  在本刊中的所有文章

参考文献:
[1] 董念清. 中国通用航空发展现状、困境及对策探析[J]. 北京理工大学学报, 2014, 16(1):110-117 DONG Nianqing. A research on the situation, difficulties and countermeasures of China's general aviation development[J]. Journal of Beijing Institute of Technology, 2014, 16(1):110-117 (in Chinese)
[2] 李为吉. 飞机总体设计[M]. 西安:西北工业大学出版社, 2005 LI Weiji. Aircraft conceptual design[M]. Xi'an:Northwestern Polytechnical University Press, 2005 (in Chinese)
[3] 陈迎春, 宋文滨, 刘洪. 民用飞机总体设计[M]. 上海:上海交通大学出版社, 2010 CHEN Yingchun, SONG Wenbin, LIU Hong. Civil aircraft design[M]. Shanghai:Shanghai Jiaotong University Press, 2010 (in Chinese)
[4] 陈迎春, 张美红, 张淼, 等. 大型客机气动设计综述[J]. 航空学报, 2019, 40(1):35-51 CHEN Yingchun, ZHANG Meihong, ZHANG Miao, et al. Review of large civil aircraft aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):35-51 (in Chinese)
[5] 王钢林, 楚亮. 提升通用飞机气动效率的设计策略研究[J]. 航空工程进展, 2015, 6(2):160-165 WANG Ganglin, CHU Liang. Research on design strategy for improving aerodynamic efficiency of general airplane[J]. Advances in Aeronautical Science and Engineering, 2015, 6(2):160-165 (in Chinese)
[6] 韩忠华, 高正红, 宋文萍, 等. 翼型研究的历史、现状与未来发展[J]. 空气动力学学报, 2021, 39(6):1-36 HAN Zhonghua, GAO Zhenghong, SONG Wenping, et al. On airfoil research and development:history, current status, and future directions[J]. Acta Aerodynamica Sinica, 2021, 39(6):1-36 (in Chinese)
[7] FUJINO M, YOSHIZAKI Y, KAWAMURA Y. Natural-laminar-flow airfoil development for a lightweight business jet[J]. Journal of Aircraft, 2003, 40(4):609-615
[8] 赵为平, 高峰, 佟胜喜, 等. 基于遗传算法的轻型通航飞机翼型优化研究[C]//2015年第二届中国航空科学技术大会, 北京, 2015:146-149 ZHAO Weiping, GAO Feng, TONG Shengxi, et al. Airfoil optimization research of light general aircraft based on the genetic algorithm[C]//2nd Chinese Aeronautics Science and Technology Conference, Beijing, 2015:146-149 (in Chinese)
[9] LIANG Xiao, MENG Guanglei, TONG Shengxi, et al. Rapid design and optimization of airfoil based on improved genetic algorithm[J]. Acta Aerodynamica Sinica, 2016, 34(6):803-812
[10] 刘远强, 李天, 白俊强, 等. 通用飞机高升力层流翼型优化设计研究[J]. 西北工业大学学报, 2017, 35(2):339-347 LIU Yuanqiang, LI Tian, BAI Junqiang, et al. Optimization design of high-lift laminar airfoil for general aircraft[J]. Journal of Northwestern Polytechnical University, 2017, 35(2):339-347 (in Chinese)
[11] 高正红, 王超. 飞行器气动外形设计方法研究与进展[J]. 空气动力学学报, 2017, 35(4):516-528 GAO Zhenghong, WANG Chao. Aerodynamic shape design methods for aircraft:status and trends[J]. Acta Aerodynamica Sinica, 2017, 35(4):516-528 (in Chinese)
[12] 阎超. 航空CFD四十年的成就与困境[J]. 航空学报, 2022, 10(43):026490 YAN Chao. On the achievements and predicaments of CFD in aeronautics for the past forty years[J]. Acta Aeronautica et Astronautica Sinica, 2022, 10(43):026490 (in Chinese)
[13] DRELA M. XFOIL:An analysis and design system for low Reynolds number airfoils[C]//Low Reynolds Number Aerodynamics, Notre Dame, Indiana, USA, 1989:1-12
[14] ZHANG Y, BAI J Q, WANG C. Delayed-VLES model for the simulation of turbulent flows[C]//International Conference on Parallel Computing in Fluid Dynamics, Changsha, 2014:344-353
[15] MCGHEE R J, BEASLEY W D. Low-speed aerodynamic characteristics of a 17-percent-thick airfoil section designed for general aviation applications[R]. NASA-TN-D-7428, 1973
[16] 刘沛清, 马利川, 屈秋林, 等. 低雷诺数下翼型层流分离泡及吹吸气控制数值研究[J]. 空气动力学学报, 2013(4):518-524 LIU Peiqing, MA Lichuan, QU Qiulin, et al. Numerical investigation of the laminar separation bubble control by blowing/suction on an airfoil at low Reynolds number[J]. Acta Aerodynamica Sinica, 2013(4):518-524 (in Chinese)
[17] 朱自强, 吴宗成, 丁举春. 层流流动控制技术及应用[J]. 航空学报, 2011, 32(5):765-784 ZHU Ziqiang, WU Zongcheng, DING Juchun. Laminar flow control technology and application[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):765-784 (in Chinese)
[18] YANG Y X, BAI J Q, LI L, et al. An inverse design method with aerodynamic design optimization for wing glove with hybrid laminar flow control[J]. Aerospace Science and Technology, 2019, 95:1-13
[19] LIEBECK R H. Design of subsonic airfoils for high lift[J]. Journal of Aircraft, 1978, 15(9):547-561
[20] 乔志德. 自然层流超临界翼型的设计研究[J]. 流体力学实验与测量, 1998(4):24-31 QIAO Zhide. Design of supercritical airfoils with natural laminar flow[J]. Experiments and Measurements Fluid Mechanics, 1998(4):24-31 (in Chinese)
[21] ABBOTT I H, DOENHOFF A E V. Theory of wing sections:Including a summary of airfoil data[M]. New York:Dover Publications, 1959
[22] SELIG M S, MAUGHMER M D, DAN M S. Natural-laminar-flow airfoil for general-aviation applications[J]. Journal of Aircraft, 1995, 32(32):710-715
[23] 卜月鹏, 宋文萍, 韩忠华, 等. 基于CST参数化方法的翼型气动优化设计[J]. 西北工业大学学报, 2013, 31(5):829-836 BU Yuepeng, SONG Wenping, HAN Zhonghua, et al. Aerodynamic optimization design of airfoil based on CST parameterization method[J]. Journal of Northwestern Polytechnical University, 2013, 31(5):829-836 (in Chinese)
[24] 刘艳, 白俊强, 华俊,等. 基于RBF插值技术的CFD/CSD非线性耦合分析方法研究[J]. 计算力学学报, 2014, 31(1):120-127 LIU Yan, BAI Junqiang, HUA Jun, et al. A approach to CFD/CSD non-linear coupling based on RBF interpolation technology[J]. Chinese Journal of Computational Mechanics, 2014, 31(1):120-127 (in Chinese)
[25] DEB K, AGRAWAL S, PRATAP A, et al. A fast and elitist multiobjective genetic algorithm:NSGA-II[J]. IEEE Trans on Evolutionary Computation, 2002, 6(2):182-197
相关文献:
1.刘远强, 李天, 白俊强, 徐家宽, 张煜.通用飞机高升力层流翼型优化设计研究[J]. 西北工业大学学报, 2017,35(2): 339-347