论文:2022,Vol:40,Issue(6):1360-1365
引用本文:
刘晓轩, 李海松, 曹天骄, 李婷. 预稳压高低温补偿高精度带隙基准电压源[J]. 西北工业大学学报
LIU Xiaoxuan, LI Haisong, CAO Tianjiao, LI Ting. A high or low temperature compensation bandgap reference voltage with pre-regulated voltage circuit[J]. Journal of Northwestern Polytechnical University

预稳压高低温补偿高精度带隙基准电压源
刘晓轩, 李海松, 曹天骄, 李婷
西安微电子技术研究所, 陕西 西安 710071
摘要:
分析了带隙基准电压分段补偿技术与基本原理,提出一种具有预稳压功能的高低温补偿带隙基准电路。应用高低温补偿电路优化了温度系数,设置预稳压电路提高了带隙基准电路的电源抑制比。基于0.35 μm 标准CMOS工艺设计并绘制了电路及版图。仿真结果表明,在-55~125℃范围内,温漂系数仅为1.8×10-6/℃;电源抑制比为-84.6 dB(在1 kHz下);在2.6~5 V的电源幅度范围下,电源抑制性能为19.6 μV/V。该电路可应用于高精度系统设计中。
关键词:    分段补偿    预稳压电路    带隙基准    低温漂   
A high or low temperature compensation bandgap reference voltage with pre-regulated voltage circuit
LIU Xiaoxuan, LI Haisong, CAO Tianjiao, LI Ting
Xi'an Microelectronic Technology Institute, Xi'an 710071, China
Abstract:
The paper analyzes the principles of piecewise compensation technology and then proposes a high or low temperature compensation bandgap reference circuit that has pre-regulated voltage. The high or low temperature compensation circuit is utilized to optimize the power supply rejection ratio and the temperature drift coefficient. The standard 0.35 μm CMOS process is used to design the circuit and its layout. The simulation results show that the temperature drift coefficient is 1.8×10-6/℃ in the range from -55 to 125℃, that the power supply rejection ratio is -84.6 dB at 1 kHz and that the power supply rejection performance is only 19.6 μV/V.
Key words:    piecewise compensation    pre-regulated voltage circuit    bandgap reference    temperature drift   
收稿日期: 2022-02-09     修回日期:
DOI: 10.1051/jnwpu/20224061360
基金项目: "十三五"核高基国家重大专项(2017ZX01006101)资助
通讯作者: 李海松(1983—),西安微电子技术研究所研究员,主要从事抗辐射加固技术研究。e-mail:1041605396@qq.com     Email:1041605396@qq.com
作者简介: 刘晓轩(1994—),西安微电子技术研究所博士研究生,主要从事CMOS图像传感器研究
相关功能
PDF(3627KB) Free
打印本文
把本文推荐给朋友
作者相关文章
刘晓轩  在本刊中的所有文章
李海松  在本刊中的所有文章
曹天骄  在本刊中的所有文章
李婷  在本刊中的所有文章

参考文献:
[1] BEHZAD Razavi. Design of analog CMOS integrated circuits[M]. 3rd ed. New York:McGraw Hill, 2002:312-314
[2] NAGULAPALLI R, PALANI R K, BHAGAVATULA S. A 24.4 ppm/℃ voltage mode bandgap reference with a 1.05 V supply[J]. IEEE Trans on Circuits and Systems II:Express Briefs, 2021, 68(4):1088-1092
[3] 赵鹏飞, 甘业兵. 一种宽电源电压范围的电流基准电路[J]. 微电子学与计算机, 2021, 38(6):72-76 ZHAO Pengfei, GAN Yebing. A current reference topology with wide supply voltage range[J]. Microelectronics & Computers, 2021, 38(6):72-76 (in Chinese)
[4] CHEN H M, LEE C C. A sub-1 ppm/℃ precision bandgap reference with adjusted-temperature-curvature compensation[J]. IEEE Trans on Circuits and Systems I:Regular Papers, 2017, 64(6):1308-1317
[5] 陆航, 蔡小五, 韩郑生, 等. 一种宽电源带有高阶温度补偿的电压基准电路[J]. 微电子学与计算机, 2020, 37(12):38-41 LU Hang, CAI Xiaowu, HAN Zhengsheng, et al. A wide power vooltage reference with high-order curvature compensation[J]. Misroelectronics & Compture, 2020, 37(12):38-41 (in Chinese)
[6] LEE C C. A high-precision bandgap reference with a v-curve correction circuit[J]. IEEE Access, 2020, 8:62632-62638
[7] DUAN Q, ROH J. A 1.2-V 4.2-ppm/℃ high-order curvature-compensated CMOS bandgap reference[J]. IEEE Trans on Circuits and Systems I:Regular Papers, 2015, 62(3):662-670
[8] VULLIGADDALA V B, ADUSUMALLI R, SINGAMALA S, et al. A digitally calibrated bandgap reference with 0.06% error for low-side current sensing application[J]. IEEE Journal of Solid-State Circuits, 2018, 53(10):2951-2957
[9] AKSHAYA R, SIVA S Y. Design of an improved bandgap reference in 180 nm CMOS process technology[C]//IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology, 2017