论文:2022,Vol:40,Issue(6):1223-1232
引用本文:
王博, 张贺, 高正红. 大展弦比太阳能无人机横航向姿态控制研究[J]. 西北工业大学学报
WANG Bo, ZHANG He, GAO Zhenghong. Lateral attitude control of solar-powered UAV with high aspect ratio[J]. Journal of Northwestern Polytechnical University

大展弦比太阳能无人机横航向姿态控制研究
王博1,2, 张贺2, 高正红1
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 航空工业第一飞机设计研究院, 陕西 西安 710089
摘要:
太阳能无人机多采用大展弦比和轻质结构设计,其气动特性和质量特性与传统飞机显著不同。详细对比分析了太阳能无人机横航向气动数据与I类、III类飞机的差异。依据刚体动力学理论,揭示了机翼静态变形对飞机稳定性的影响。进一步利用根轨迹法深入分析了太阳能无人机横航向稳定性,研究了特征根随机翼变形的变化规律。将飞机稳定转弯时的力矩方程与动力学方程结合,揭示了受运动耦合和副翼舵效约束的滚转姿态安全边界。针对太阳能无人机的气动特点、飞机特性受机翼上反变形影响较大以及滚转姿态限制问题,提出了采用具有强鲁棒性的自适应反步法,实现太阳能无人机滚转姿态的精确控制。
关键词:    大展弦比    太阳能无人机    运动耦合    姿态限制    自适应反步法   
Lateral attitude control of solar-powered UAV with high aspect ratio
WANG Bo1,2, ZHANG He2, GAO Zhenghong1
1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. The First Aircraft Institute, Xi'an 710089, China
Abstract:
A solar-powered UAV usually has a high-aspect-ratio and flexible structural design. Its aerodynamic and mass characteristics are different from those of a conventional aircraft. This paper compares the differences in lateral aerodynamic data with those of Class I and Class III aircrafts. Based on the rigid-body dynamics theory, the effects of flexible wing deformation on the stability of the UAV are analyzed. Then, by combining the structural deformation, inertia variation and aerodynamic derivative, the solar-powered UAV's lateral stability is analyzed based on the root locus method. The variation of eigenvalues with wing deformation is also investigated. The rolling moment equation is combined with the kinematic equation to reveal the roll attitude limitation envelope constrained by the kinematic coupling and aileron effects. Taking into account the aerodynamic characteristics of the solar-powered UAV, its wing deformation and roll attitude limitation problem, this paper proposes an adaptive back-stepping control method with strong robustness to achieve the accurate control of the roll attitude of the solar-powered UAV.
Key words:    high aspect ratio    solar-powered UAV    kinematic coupling    attitude limitation    adaptive backstepping   
收稿日期: 2022-02-26     修回日期:
DOI: 10.1051/jnwpu/20224061223
通讯作者: 高正红(1960—),西北工业大学教授、博士生导师,主要从事空气动力学、飞行力学研究。e-mail:zgao@nwpu.edu.cn     Email:zgao@nwpu.edu.cn
作者简介: 王博(1983—),航空工业第一飞机设计研究院高级工程师,主要从事飞行控制律设计研究
相关功能
PDF(3547KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王博  在本刊中的所有文章
张贺  在本刊中的所有文章
高正红  在本刊中的所有文章

参考文献:
[1] 袁立群, 黄良平. 国外临近空间超长航时无人机发展及应用情况综述[J]. 战术导弹技术, 2018(2):27 YUAN Liqun, HUANG Liangping. The summarization of the development and application of near space super long endurance UAV in foreign country[J]. Tactical Missile Technology, 2018(2):27 (in Chinese)
[2] QINETI Q. Solar aircraft achieves longest unmanned flight[J]. Reinforced Plastics, 2018, 54(5):9
[3] 马东立, 张良, 杨穆清, 等. 超长航时太阳能无人机关键技术综述[J]. 航空学报, 2020, 41(3):623418 MA Dongli, ZHANG Liang, YANG Muqing, et al. Review of key technologies of ultra-long-endurance solar powered aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):623418 (in Chinese)
[4] RAJENDRAND P, SMITH H. Future trend analysis on the design and performance of solar-powered electric unmanned aerial vehicles[J]. Advanced Materials Research, 2015, 1125(20):635-640
[5] 李晓阳. 蓝天任我游——中国"绿色先锋"太阳能无人机技术验证机[J]. 国际航空,2012, 12:38-39 LI Xiaoyang. China's green-pionner solar powered UAV[J]. International Aviation, 2012, 12:38-39 (in Chinese)
[6] 苑轩. 我国首款大型太阳能无人机完成两万高空飞行[J]. 中国航天, 2017(7):33 YUAN Xuan. China's first large solar unmanned aerial vehicle completed 20 000 meters high-altitude flight[J]. Aerospace China, 2017(7):33 (in Chinese)
[7] 孙婧, 胡利娟. 照亮临近空间的彩虹[J]. 中国科技财富, 2017(10):58-59 SUN Jing, HU Lijuan. The rainbow lighting near space[J]. Fortune World, 2017(10):58-59 (in Chinese)
[8] 搜狐网.27.6小时!西工大"魅影"团队突破自我MY-12太阳能无人机再问鼎最长续航[EB/OL]. (2019-07-29)[2019-09-20]. http://www.sohu.com/a/330181618_714515
[9] NOLL T E, ISHMAEL S D, HENWOOD B, et al. Technical findings, lessons learned, and recommendations resulting from the helios prototype vehicle mishap[C]//NATO/RTO AVT-145 Workshop on Design Concepts, Processes and Criteria for UAV Structural Integrity, 2007
[10] NOLL T E, BROWN J M, MARLA E, et al. Investigation of the Helios prototype aircraft mishap volume I mishap report[M]. California:CreateSpace Independent Publishing Platform, 2012
[11] National Transportation Safety Board. Aviation Accident Database & Synopses[EB/OL].(2016-12-16)[2022-02-10]. https://www.ntsb.gov/Pages/AviationQuery.aspx
[12] CHANG M, ZHOU Z, CHENG K. Exploring the characteristics of power density of tracking PV modules for high altitude stationary solar-powered airplanes[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):273-281
[13] CHANG M, ZHOU Z, AND WANG R. Primary parameters determination for year-round solar-powered aircraft of wing-sail type at higher latitudes[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6):1592-1603
[14] FU Z C, ZHONG W G, CHEN Z P. Experimental study on structural dynamic characteristics of flexible high-aspectratio wings[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2177-2184
[15] 李锋, 叶川, 李广佳, 等. 临近空间太阳能飞行器横航向稳定性[J]. 航空学报, 2016(37):1148-1158 LI Feng, YE Chuan, LI Guangjia, et al. Lateral-directional stability of near-space solar-powered aircraft[J]. Acta Aeronautica et Astronautic Sinica, 2016,37(4):1148-1158 (in Chinese)
[16] YE Chuan, LI Feng, LI Guangjia, et al. Lateral-Directional stability of the near-space solarpowered aircraft[C]//AIAA SciTech Forum, 2016
[17] 张旺旺, 张利国, 杨康, 等. 不同翼型太阳能无人机的气动特性分析[J]. 机械制造, 2019, 57(11):40-42 ZHANG Wangwang, ZHANG Liguo, YANG Kang, et al. Analysis of the aerodynamic characteristics of different airfoil of solar powered UAVs[J]. Mechanical Manufacturing, 2019, 57(11):40-42 (in Chinese)
[18] 吴滔, 黄一敏, 孙春贞, 等. 太阳能无人机横侧向控制律研究[C]//2014 IEEE国际导航、制导与控制会议, 烟台,2014 WU Tao, HUANG Yimin, SUN Chunzhen. Research on law of lateral control for solar UAV[C]//Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference, Yantai, 2014 (in Chinese)
[19] 赵维娜, 孙诚骁, 周平方, 等. 多螺旋桨太阳能无人机航向控制分配方法[J]. 哈尔滨工程大学学报,2015, 36(4):469-472 ZHAO Weina, SUN Chengxiao, ZHOU Pingfang, et al. Directional control allocation of a multi-propeller solar UAV[J]. Journal of Harbin Engineering University, 2015, 36(4):469-472 (in Chinese)
[20] 马振宇,祝小平,周洲. 一种方向舵-螺旋桨联用的全翼式太阳能无人机横航向控制方法[J]. 航空学报,2018,39(3):4-6 MA Zhenyu, ZHU Xiaoping, ZHOU Zhou. A lateral-directional control method combining rudder and propeller for full-wing solar-powered UAV[J]. Acta Aeronautica et Astronautic Sinica, 2018, 39(3):4-6 (in Chinese)
[21] BRITT R T, ORTEGA D, TIGUE M J, et al. Wind tunnel test of a very flexible aircraft wing[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2012
[22] 方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京:北京航空航天出版社,2005:255-275 FANG Zhenping, CHEN Wanchun, ZHANG Shuguang. Aircraft flight dynamics[M]. Beijing:Beijing University of Aeronautics and Astronautics Press, 2005:255-275 (in Chinese)
[23] KANELLAKOPOULOS I, KOKOTOVIC P V, MORSE A S. Systematic design of adaptive controllers for feedback linearizable systems[J]. IEEE Trans on Automatic Control, 1991, 36(11):1241-1253
[24] KRSTIC M, KANELLAKOPOULOS I, KOKOTOVIC P V. Nonlinear and adaptive control design[M]. New York:John Wiley & Sons Inc, 1995
[25] VAN Gils P, KAMPEN E, VISSER C, et al. Adaptive incremental backstepping flight control for a high-performance aircraft with uncertainties[C]//AIAA Guidance, Navigation, and Control Conference, 2016
[26] ALI A, CHU Q P, KAMPEN E J, et al. Exploring adaptive incremental backstepping using immersion and invariance for an F-16 aircraft[C]//AIAA Guidance, Navigation, and Control Conference. 2014