论文:2022,Vol:40,Issue(5):1145-1154
引用本文:
滕兆春, 马铃权, 付小华. 多孔功能梯度材料Timoshenko梁的非线性自由振动分析[J]. 西北工业大学学报
TENG Zhaochun, MA Lingquan, FU Xiaohua. Nonlinear free vibration analysis of Timoshenko beams with porous functionally graded materials[J]. Journal of Northwestern Polytechnical University

多孔功能梯度材料Timoshenko梁的非线性自由振动分析
滕兆春, 马铃权, 付小华
兰州理工大学 理学院, 甘肃 兰州 730050
摘要:
基于Timoshenko梁变形理论研究多孔功能梯度材料梁的非线性自由振动问题。针对多孔功能梯度材料梁的孔隙均匀分布和孔隙线性分布2种形式,根据广义Hamilton原理推导多孔功能梯度材料Timoshenko梁的非线性自由振动的控制微分方程组并对方程组进行无量纲化。采用微分变换法(DTM)对各种边界条件下的控制微分方程组进行变换,得到等价代数特征方程。计算了多孔功能梯度材料Timoshenko梁在固支-固支(C-C)、固支-简支(C-S)、简支-简支(S-S)和固支-自由(C-F)4种边界条件下非线性横向自由振动的无量纲固有频率比值。将其退化为无孔隙功能梯度材料Timoshenko梁的非线性自由振动后,所得非线性无量纲固有频率比值与已有文献的计算结果进行对照,验证了文中方法的有效性和正确性,讨论了边界条件、孔隙率、细长比和梯度指数对多孔功能梯度材料Timoshenko梁非线性无量纲固有频率比值的影响。
关键词:    多孔功能梯度材料    Timoshenko梁    非线性自由振动    固有频率    微分变换法(DTM)   
Nonlinear free vibration analysis of Timoshenko beams with porous functionally graded materials
TENG Zhaochun, MA Lingquan, FU Xiaohua
School of Science, Lanzhou University of Technology, Lanzhou 730050, China
Abstract:
Based on the theory of Timoshenko beam, the nonlinear free vibration of functionally graded material beams is studied. In view of the two forms of uniform pores distribution and linear pores distribution for porous functionally graded material beams, the governing differential equations of nonlinear free vibration of porous functionally graded material Timoshenko beam are derived firstly in terms of the generalized Hamilton principle, and the dimensionless form of the governing differential equations are also obtained. Secondly, the governing differential equations under various boundary conditions are transformed by the differential transformation method to obtain the equivalent algebraic characteristic equations. Finally, the dimensionless natural frequency ratio of nonlinear transverse free vibration of porous FGM Timoshenko beam under four boundary conditions of clamped-clamped (C-C), clamped-simply supported (C-S), simply supported-simply supported (S-S) and clamped-free (C-F) is calculated. It is reduced to the nonlinear free vibration of Timoshenko beam without pores, the nonlinear dimensionless natural frequency ratio is compared with the calculation results in the literature, then the validity and correctness are verified. The effects of the boundary conditions, porosity, slenderness ratio and gradient index on the nonlinear dimensionless natural frequency ratio of porous functionally graded material's Timoshenko beam are discussed.
Key words:    porous functionally graded materials    Timoshenko beams    nonlinear free vibration    natural frequency    Differential Transformation Method (DTM)   
收稿日期: 2021-12-17     修回日期:
DOI: 10.1051/jnwpu/20224051145
基金项目: 国家自然科学基金(12062010)资助
通讯作者:     Email:
作者简介: 滕兆春(1969—),兰州理工大学副教授、硕士生导师,主要从事智能材料与结构力学、结构动力学研究。e-mail:tengzc@lut.edu.cn
相关功能
PDF(2545KB) Free
打印本文
把本文推荐给朋友
作者相关文章
滕兆春  在本刊中的所有文章
马铃权  在本刊中的所有文章
付小华  在本刊中的所有文章

参考文献:
[1] SALEH B, JIANG J, FATHI R, et al. 30 Years of functionally graded materials:an overview of manufacturing methods, applications and future challenges[J]. Composites Part B:Engineering, 2020, 201:108376
[2] CARRERA E, BRISCHETTO S, ROBALDO A. Variable kinematic model for the analysis of functionally graded material plates[J]. AIAA, 2006, 46(1):194-203
[3] REDDY J N, CHIN C D. Thermomechanical analysis of functionally graded cylinders and plates[J]. Journal of Thermal Stresses, 1998, 21:593-626
[4] CHAKRAVERTY S, PRADHAN K K. Free vibration of exponential functionally graded rectangular plates in thermal environm-ent with general boundary conditions[J]. Aerospace Science and Technology, 2014, 36:132-156
[5] BOUAMAMA M, EIMEICHE A, ELHENNANI A, et al. Exact solution for free vibration analysis of FGM beams[J]. Journal of Composite and Advanced Materials, 2020, 30(2):55-60
[6] SAFA A, HADJI L, BOURADA M, et al. Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory[J]. Earthquakes and Structures, 2019, 17(3):329-336
[7] CHEN Y, JIN G, ZHANG C, et al. Thermal vibration of FGM beams with general boundary conditions using a higher-order shear deformation theory[J]. Composites Part B:Engineering, 2018, 153:376-386
[8] XIA Y, LI S, WAN Z. Bending solutions of FGM Reddy-Bickford beams in terms of those of the homogenous Euler-Bernoulli beams[J]. Acta Mechanica Solida Sinica, 2019, 32(29):499-516
[9] LI M, GUEDES SOARES C, YAN R. Free vibration analysis of FGM plates on Winkler/Pasternak/Kerr foundation by using a simple quasi-3D HSDT[J]. Composite Structures, 2021, 264:113643
[10] SIMSEK M. Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories[J]. Nuclear Engineering and Design, 2010, 240(4):697-705
[11] 滕兆春,席鹏飞.多孔FGM矩形板的自由振动与临界屈曲载荷分析[J].西北工业大学学报, 2021, 39(2):317-325 TENG Zhaochun, XI Pengfei. Analysis on free vibration and critical buckling load of a FGM porous rectangular plate[J]. Journal of Northwestern Polytechnical University, 2021, 39(2):317-325(in Chinese)
[12] ZHAO J, WANG Q, DENG X, et al. Free vibrations of functionally graded porous rectangular plate with uniform elastic boundary conditions[J]. Composites Part B:Engineering, 2019, 168:106-120
[13] KIRAN M C, KATTIMANI S C, VINYAS M. Porosity influence on structural behavior of skew functionally graded magneto-electro-elastic plate[J]. Composite Structures, 2018, 191:36-77
[14] RAO S S. Vibration of continuous systems[M]. 2nd ed. Hoboken:John Wiley and Sons, 2019
[15] WATTANASAKULPONG N, UNGBHAKORN V. Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities[J]. Aerospace Science and Technology, 2014, 32(1):111-120
[16] EBRAHIMI F, MOKHTARI M. Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2015, 37(4):1435-1444
[17] GHAZARYAN D, BURLAYENKO V N, AVETISYAN A, et al. Free vibration analysis of functionally graded beams with non-uniform cross-section using the differential transform method[J]. Journal of Engineering Mathematics, 2018, 110(1):97-121
[18] XIE K, WANG Y, FAN X, et al. Nonlinear free vibration analysis of functionally graded beams by using different shear deformation theories[J]. Applied Mathematical Modelling, 2020, 77(2):1860-1880