论文:2022,Vol:40,Issue(5):1080-1089
引用本文:
余元元, 王方元, 王彬, 孙建红, 许常悦, 孙智. 超声速火箭橇流动特征和气动力激励振动分析[J]. 西北工业大学学报
YU Yuanyuan, WANG Fangyuan, WANG Bin, SUN Jianhong, XU Changyue, SUN Zhi. Analysis on flow characteristics and aerodynamic-force-induced vibration of supersonic rocket-sled[J]. Journal of Northwestern Polytechnical University

超声速火箭橇流动特征和气动力激励振动分析
余元元1, 王方元1, 王彬1, 孙建红1,2, 许常悦1, 孙智2
1. 南京航空航天大学 飞行器环境控制与生命保障工业与信息化部重点实验室, 江苏 南京 210016;
2. 南京航空航天大学 民航应急科学与技术重点实验室, 江苏 南京 211106
摘要:
目前,火箭橇试验是飞行器空气动力学重要试验手段,然而强烈的地面与轨道干扰会影响试验的精度,甚至导致试验失败。采用尺度自适应SAS方法和基于铺层算法的动网格技术对不同马赫数下的超声速火箭橇滑行过程进行数值模拟,探究了超声速火箭橇的气动力致振机理。采用了数值风洞模拟方法对超声速火箭橇无限空间绕流和仅包含地面的橇体绕流进行仿真,分析了不同环境条件下的激波特征。结果表明:超声速火箭橇的头激波传播至轨道和地面时会发生激波反射,反射激波的存在会导致超声速火箭橇产生升力,并带来阻力的略微增加;反射激波与轨道扣件的周期性碰撞使得其尾迹区具有非定常特征;火箭橇的气动力激励振动频率与尾迹波动频率一致,即气动力激励振动对非定常尾迹具有锁频现象。此外,压力信号的功率谱密度分析表明气动力激励振动存在谐声现象,这与锁频现象密切相关。
关键词:    火箭橇    动网格    激波    超声速流动    尺度自适应模拟   
Analysis on flow characteristics and aerodynamic-force-induced vibration of supersonic rocket-sled
YU Yuanyuan1, WANG Fangyuan1, WANG Bin1, SUN Jianhong1,2, XU Changyue1, SUN Zhi2
1. Key Laboratory of Aircraft Environment Control and Life Support, MIIT, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
2. Key Laboratory of Civil Aviation Emergency Science and Technology, CAAC, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
Abstract:
Nowadays, the rocket-sled test is an important experimental method of vehicle aerodynamics, while the experimental accuracy will be badly affected by the strong interaction of ground and orbit, even leading to the testing failure. Numerical simulations of supersonic rocket-sled during dynamic gliding at different Mach numbers were carried out by using a scale-adaptive simulation (SAS) method and a dynamic grid technique based on a tiling algorithm, and the aerodynamic-force-induced vibration mechanism of supersonic rocket-sled was investigated. Numerical wind tunnel technique was also used to simulate the supersonic flow around rocket-sled in the infinite and ground-only environmental space, and the shock wave characteristics at different environmental conditions were analyzed. Study results shown that: the head-shock of supersonic rocket-sled propagated to the orbit and ground with a reflected shock; For the supersonic rocket-sled, the presence of reflected shock leaded to the generation of lift and a slight increase of drag; The unsteady wake was closely associated with the periodic collision between the reflected shock and rail fasteners; The aerodynamic-force-induced vibration frequency of supersonic rocket-sled was equal to the wake fluctuation frequency, i.e., the aerodynamic-force-induced vibration had a frequency locking effect on the unsteady wake. Furthermore, the power spectral density analysis of pressure signal shown that there was a harmonic phenomenon in the aerodynamic-force-induced vibration, which was closely related to the frequency locking phenomenon.
Key words:    rocket-sled    dynamic grid    shock wave    supersonic flow    scale-adaptive simulation   
收稿日期: 2022-01-12     修回日期:
DOI: 10.1051/jnwpu/20224051080
基金项目: 国家自然科学基金(12172172)、航空科学基金(20200029052001)与江苏高校优势学科建设工程项目资助
通讯作者: 许常悦(1981-),南京航空航天大学副教授,主要从事人机与环境工程研究。e-mail:cyxu@nuaa.edu.cn     Email:cyxu@nuaa.edu.cn
作者简介: 余元元(1974—),南京航空航天大学博士研究生,主要从事人机与环境工程研究。
相关功能
PDF(2916KB) Free
打印本文
把本文推荐给朋友
作者相关文章
余元元  在本刊中的所有文章
王方元  在本刊中的所有文章
王彬  在本刊中的所有文章
孙建红  在本刊中的所有文章
许常悦  在本刊中的所有文章
孙智  在本刊中的所有文章

参考文献:
[1] SCHMISSEUR J D. Hypersonics into the 21st century:a perspective on AFOSR-sponsored research in aerothermodynamics[J]. Progress in Aerospace Science, 2015, 72:3-16
[2] 范坤,王西泉,杨珍.火箭橇结构动力学仿真分析技术研究[J].导航与控制, 2015, 14(6):21-26 FAN Kun, WANG Xiquan, YANG Zhen. Research on structure dynamic simulation analysis technology of rocket sled[J]. Navigation and Control, 2015, 14(6):21-26(in Chinese)
[3] 陈陆军,黄勇,黄迪,等.低速风洞试验模型主动抑振系统设计与验证[J].噪声与振动控制, 2018, 38(增刊1):358-361 CHEN Lujun, HUANG Yong, HUANG Di, et al, The Design and experimental study on active vibration control system for low speed wind tunnel test mode[J]. Noise and Vibration Control, 2018, 38(suppl 1):358-361(in Chinese)
[4] 吴盛豪,陈吉明,陈钦,等.跨声速风洞试验段流场品质提升措施研究[J].西北工业大学学报, 2021, 39(3):660-667 WU Shenghao, CHEN Jiming, CHEN Qin, et al. Measurement Improvement of flow quality of slotted test section in transonic wind tunnel[J]. Journal of Northwestern Polytechnical University, 2021, 39(3):660-667(in Chinese)
[5] 陈旦,杨孝松,李刚,等.连续式风洞总压和调节阀相关性研究及其应用[J].西北工业大学学报, 2020, 38(2):325-332 CHEN Dan, YANG Xiaosong, LI Gang, et al. Relativity research of total pressure and regulating valve in continuous wind tunnel and its application[J]. Journal of Northwestern Polytechnical University, 2020, 38(2):325-332(in Chinese)
[6] 吕润民.超音速火箭橇气动激励振动特性研究[D].南京:南京航空航天大学, 2020 LYU Runmin. Study on aerodynamic vibration characteristics of supersonic rocket sled[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2020(in Chinese)
[7] 周真学,周绍慧.国外火箭滑车图册[M].北京:国防工业出版社, 1979:1-3 ZHOU Zhenxue, ZHOU Shaohui. Foreign atlas of rocket sled[M]. Beijing:National Defense Industry Press, 1979(in Chinese)
[8] 赵继波,赵峰,谭多望,等.火箭橇加载试验技术研究[J].爆炸与冲击, 2007, 27(6):572-576 ZHAO Jibo, ZHAO Feng, TAN Duowang, et al. Research on load technique for rocket sled[J]. Explosion and Shock Waves, 2007, 27(6):572-576(in Chinese)
[9] 孔维红,张惠民,李荣晖,等.火箭滑橇发射过程的动力学分析及数值计算[J].四川兵工学报, 2009, 30(7):42-44 KONG Weihong, ZHANG Huimin, LI Ronghui, et al. Dynamics analysis and numerical calculation of rocket sled launch process[J]. Journal of Ordnance Equipment Engineering, 2009, 30(7):42-44(in Chinese)
[10] LIU S, CAO J, ZHONG C W. Multiscale kinetic inviscid flux extracted from a gas-kinetic scheme for simulating incompressible and compressible flows[J]. Physical Review E, 2020, 102(3):033310
[11] 韩鹏,潘光,黄桥高,等.雷诺数对于方柱流致振动能量收集系统的影响[J].西北工业大学学报, 2020, 38(5):928-936 HAN Peng, PAN Guang, HUANG Qiaogao, et al. The effects of Reynolds number on energy harvesting from FIV by a square cylinder[J]. Journal of Northwestern Polytechnical University, 2020, 38(5):928-936(in Chinese)
[12] KRUPOVAGE D J, MIXON L C, POKORNY O T. Wind-tunnel and full-scale forces on rocket sleds[J]. Journal of Spacecraft and Rockets, 1967, 4(10):1346-1351
[13] RIGALI D J, FELTZ L V. High speed monorail rocket sleds for aerodynamic testing at high Reynolds numbers[J]. Journal of Spacecraft, 1968, 5(11):1341-1346
[14] ZHANG J H, JIANG S S. Definition of boundary conditions and dynamic analysis of rocket sled and turntable[J]. Applied Mechanics and Materials, 2011, 52/53/54:261-266
[15] ZHANG J H, JIANG S S. Rigid-flexible coupling model and dynamic analysis of rocket sled[J]. Advanced Materials Research, 2012, 346:447-454
[16] ZHANG J H. Dynamic coupling analysis of rocket propelled sled using multibody-finite element method[J]. Computer Modelling&New Technologies, 2014, 18(4):25-30
[17] 张立乾,邓宗才,陈向东,等.超音速单轨火箭滑橇气动特性数值模拟[J].弹道学报, 2011, 4:100-104 ZHANG Liqian, DENG Zongcai, CHEN Xiangdong, et al. Numerical simulation of aerodynamic characteristic of supersonic monorail rocket sled[J]. Journal of Ballistics, 2011, 4:100-104(in Chinese)
[18] 党峰,范坤,谢波涛,等.箭橇一体化设计方法研究[J].测试技术学报, 2014, 28(1):80-84 DANG Feng, FAN Kun, XIE Botao, et al. Research on rocket and sled integration design method[J]. Journal of Test and Measurement Technology, 2014, 28(1):80-84(in Chinese)
[19] LOFTHOUSE A J, HUGHSON M C, PALAZOTTO A N. Computational aerodynamic analysis of the flow field about a hypervelocity test sled[R]. AIAA-2002-0981
[20] LUMB S, BOSMAJIAN N, HOOSER C. Non vitiated hypersonic propulsion system testing at the Holloman high speed test track[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Tucson, 2005
[21] STRIKE W S, LUCAS E J. Evaluation of wind tunnel tests on AFMDC monorail cone and spike-nose sled configurations at Mach numbers from 2.0 to 5.0[R]. AEDC-TR-68-198
[22] MENTER F R, EGOROV Y. The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1:theory and model description[J]. Flow Turbulence and Combustion, 2010, 85(1):113-138
[23] 米百刚,詹浩,朱军.基于动网格的真空管道高速列车阻力计算方法研究[J].真空科学与技术学报, 2013, 33(9):877-882 MI Baigang, ZHAN Hao, ZHU Jun. Simulation of aerodynamic drag of high-speed train in evacuated tube transportation[J]. Chinese Journal of Vacuum Science and Technology, 2013, 33(9):877-882(in Chinese)
[24] YU Y, WANG B, XU C, et al. Aerodynamic characteristics of supersonic rocket-sled involving waverider geometry[J]. Applied Sciences, 2022, 12:7861
[25] CHAPLIN R, MACMAUS D, LEOPOLD F, et al. Computational and experimental investigation into aerodynamic interference between slender bodies in supersonic flow[J]. Computer&Fluids, 2011, 50(1):155-174
[26] MASON F, NATARAJAN K, KUMAR R. Shock-wave/boundary-layer interactions on an axisymmetric body at Mach 2[J]. AIAA Journal, 2021, 59(11):4530-4543
[27] ZUO F Y, MEMMOLO A, HUANG G P, et al.Direct numerical simulation of conical shock wave-turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2019, 877:167-195
[28] WU J Z, MA H Y, ZHOU M D. Vorticity and vortex dynamics[M]. Berlin:Springer-Verlag Press, 2007
[29] 许常悦.圆柱可压缩绕流及其流动控制的大涡模拟研究[D].合肥:中国科学技术大学, 2009 XU Changyue. Large eddy simulation of the compressible flow past a circular cylinder and its flow control[D]. Hefei:University of Science and Technology of China, 2009(in Chinese)
[30] ANDREOPOULOS Y, AGUI J H, BRIASSULIS G. Shock wave-turbulence interactions[J]. Annual Review of Fluid Mechanics, 2000, 32(1):309-345
[31] SUN J H. Flapping turbulent plane jets in shallow water and interacting with surface waves[D]. Hong Kong:Hong Kong University of Science and Technology, 2001
[32] LU X Y. Numerical study of the flow behind a rotary oscillating circular cylinder[J]. International Journal of Computational Fluid Dynamics, 2002, 16(1):65-82
[33] LAMB J L. Critical velocities for rocket sled excitation of rail resonance[J]. Johns Hopkins APL Technical Digest, 2000, 21(3):448-458