论文:2022,Vol:40,Issue(5):980-989
引用本文:
余远锋, 郑晓亚, 李鹏, 张中洲, 校金友. 基于多项式型退化函数的脆性断裂相场模型[J]. 西北工业大学学报
YU Yuanfeng, ZHENG Xiaoya, LI Peng, ZHANG Zhongzhou, XIAO Jinyou. Phase field model of brittle fracture based on polynomial degradation function[J]. Journal of Northwestern Polytechnical University

基于多项式型退化函数的脆性断裂相场模型
余远锋1, 郑晓亚2, 李鹏3, 张中洲3, 校金友2
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 西北工业大学 航天学院, 陕西 西安 710072;
3. 西安现代控制技术研究所, 陕西 西安 710065
摘要:
为了使相场模型更好地描述材料脆性断裂过程,给出了一个多项式型退化函数,并推导了相场模型对应的弹性极限应力与应变、临界相场值,以及临界应力与应变公式,定量地描述材料的断裂变化过程。从临界相场值公式可以发现,随着函数次数的增大,临界相场值不断减小,这表明模型在破坏时的损伤程度逐渐减小。通过算例分析了退化函数对材料断裂过程的影响,在函数次数较小时,可以使相场模型很好地保持线弹性响应过程。随着次数的增大,函数在初始阶段下降趋势增大,会使材料内部的损伤趋势加剧,引起材料更早地发生破坏,表明退化函数的变化趋势在一定程度上也会影响材料的失效变化过程。
关键词:    相场模型    脆性断裂    多项式    退化函数    损伤   
Phase field model of brittle fracture based on polynomial degradation function
YU Yuanfeng1, ZHENG Xiaoya2, LI Peng3, ZHANG Zhongzhou3, XIAO Jinyou2
1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
3. Xi'an Modern Control Technology Research Institute, Xi'an 710065, China
Abstract:
In order to make the phase field model better describe the brittle fracture process of materials, a polynomial degradation function is given in this paper, and the elastic limit stress and strain corresponding to the phase field model, the critical phase field value, and the critical stress and strain formulas are deduced so as to quantitatively describe the fracture change process of materials. From the formula of the critical phase field value, it can be found that the value decreases with the increasing of number of functions continuously, which indicates that the damage degree of the model decreases gradually when it is damaged. The influence of the degradation function on the fracture process of the material is analyzed by a numerical example. When the function order is small, the phase field model can keep the linear elastic response process well. With the increasing of number of functions, the decreasing trend of the function increases at the beginning, which will aggravate the damage trend inside the material and cause the material to damage earlierly, indicating that the change trend of the degradation function will affect the failure process of the material to a certain extent.
Key words:    phase field model    brittle fracture    polynomial    degradation function    failure   
收稿日期: 2021-12-14     修回日期:
DOI: 10.1051/jnwpu/20224050980
基金项目: 基础加强计划重点基础研究项目(2020-JCJQ-ZD-076-00)资助
通讯作者: 郑晓亚(1980-),西北工业大学副教授,主要从事飞行器结构设计研究。e-mail:zhengxy_8042@nwpu.edu.cn     Email:zhengxy_8042@nwpu.edu.cn
作者简介: 余远锋(1991—),西北工业大学博士研究生,主要从事复合材料相场方法研究。
相关功能
PDF(2281KB) Free
打印本文
把本文推荐给朋友
作者相关文章
余远锋  在本刊中的所有文章
郑晓亚  在本刊中的所有文章
李鹏  在本刊中的所有文章
张中洲  在本刊中的所有文章
校金友  在本刊中的所有文章

参考文献:
[1] ARSON C. Generalized stress variables in continuum damage mechanics[J]. Mechanics Research Communications, 2014, 60:81-84
[2] ZHAN Z, HU W, LI B, et al. Continuum damage mechanics combined with the extended finite element method for the total life prediction of a metallic component[J]. International Journal of Mechanical Sciences, 2017, 124/125:48-58
[3] PANDEY V B, SAMANT S S, SINGH I V, et al. An improved methodology based on continuum damage mechanics and stress triaxiality to capture the constraint effect during fatigue crack propagation[J]. International Journal of Fatigue, 2020, 140:105823
[4] DAVEY K, DARVIZEH R, ZHANG J. Finite similitude in fracture mechanics[J]. Engineering Fracture Mechanics, 2021, 245:107573
[5] YUN K, WANG Z, RONALD S, et al. An advanced continuum damage mechanics model for predicting the crack progress process based on the consideration of the influence of crack direction under quasi-static load[J]. International Journal of Mechanical Sciences, 2017, 130:487-496
[6] FRANCISCO E J, JOSÉ F. A novel continuum damage model to simulate quasi-brittle failure in mode I and mixed-mode conditions using a continuous or a continuous-discontinuous strategy[J]. Theoretical and Applied Fracture Mechanics, 2020, 109:102745
[7] JIANG S, GU Y, FAN C M, et al. Fracture mechanics analysis of bimaterial interface cracks using the generalized finite difference method[J]. Theoretical and Applied Fracture Mechanics, 2021, 113:102942
[8] KRUEGER R. Virtual crack closure technique:history, approach, and applications[J]. Applied Mechanics Reviews, 2004, 57(1):109-143
[9] MOES N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 46:131-150
[10] BOBARU F, FOSTER J T, GEUBELLE P H, et al. Handbook of Peridynamic Modeling[M]. Boca Raton:CRC Press, 2016
[11] MIEHE C, WELSCHINGER F, HOFACKER M. Thermodynamically-consistent phase field models of fracture:variational principles and multi-field FE implementations[J]. International Journal for Numerical Methods in Engineering, 2010, 83:1273-1311
[12] SILLING S, EPTON M, WECKNERO O, et al. Peridynamics states and constitutive modeling[J]. Journal of Elasticity, 2007, 88:151-184
[13] SILLING S. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics and Physics of Solids,2000, 48:175-209
[14] AMBATI M, GERASIMOV T, LORENZIS L D. A review on phase-field models of brittle fractureand a new fast hybrid formulation[J]. Computational Mechanics, 2015, 55:383-405
[15] TEICHTMEISTER S, KIENLE D, ALDAKHEEL F, et al. Phase field modeling of fracture in anisotropic brittle solids[J]. International Journal of Non-Linear Mechanics, 2017, 97:1-21
[16] HAKIM V, KARMA A. Laws of crack motion and phase-field models of fracture[J]. Journal of the Mechanics and Physics of Solids. 2009, 57:342-368
[17] PONS A J, KARMA A. Helical crack-front instability in mixed-mode fracture[J]. Nature, 2010, 464(7285):85-89
[18] BOURDIN B, FRANCFORT G, MARIGO J J, The variational approach to fracture[M]. Berlin:Springer Science+Business Media, 2008
[19] FRANCFORT G A, MARIGO J J. Revisiting brittle fracture as an energy minimization problem[J]. Journal of the Mechanics and Physics of Solids, 1998, 46:1319-1342
[20] BOURDIN B, FRANCFORT G A, MARIGO J J. Numerical experiments in revisited brittle fracture[J]. Journal of the Mechanics and Physics of Solids, 2000, 48:797-826
[21] MIEHE C, HOFACKER M, WELSCHINGER F. A phase field model for rate-independent crack propagation:robust algorithmic implementation based on operator splits[J]. Computer Method in Applied Mechanics and Engineering, 2010, 199:2765-2778
[22] CHEN Y, VASIUKOV D, GÉLÉBART L, et al. A FFT solver for variational phase-field modeling of brittle fracture[J]. Computer Method in Applied Mechanics and Engineering, 2019, 349:167-190
[23] HIRSHIKESH, PRAMOD A L N, ANNABATTULA R K, et al. Adaptive phase-field modeling of brittle fracture using the scaled boundary finite element method[J]. Computer Method in Applied Mechanics and Engineering, 2019, 355:284-307
[24] MIEHE C, HOFACKER M, SCHÄNZEL LM, et al. Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids[J]. Computer Method in Applied Mechanics and Engineering, 2015, 294:486-522
[25] BORDEN M J, HUGHES T J, LANDIS C M, et al. A phase-field formulation for fracture in ductile materials:finite deformation balance law derivation, plastic degradation, and stress triaxiality effects[J]. Computer Method in Applied Mechanics and Engineering, 2016, 312:130-166
[26] BORDEN M J, VERHOOSEL C V, SCOTT M A, et al. A phase-field description of dynamic brittle fracture[J]. Computer Method in Applied Mechanics and Engineering, 2012, 217/218/219/220:77-95
[27] REN H, ZHUANG X, ANITESCU C, et al. An explicit phase field method for brittle dynamic fracture[J]. Computers and Structures, 2019, 217:45-56
[28] PAGGI M, REINOSO J. Revisiting the problem of a crack impinging on an interface:a modeling framework for the interaction between the phase field approach for brittle fracture and the interface cohesive zone model[J]. Computer Method in Applied Mechanics and Engineering, 2017, 321:145-172
[29] MANDAL T K, NGUYEN V P, WU J Y. Length scale and mesh bias sensitivity of phase-field models for brittle and cohesive fracture[J]. Engineering Fracture Mechanics, 2019, 217:106532
[30] MESGARNEJAD A, IMANIAN A, KARMA A. Phase-field models for fatigue crack growth[J]. Theoretical and Applied Fracture Mechanics, 2019, 103:102282
[31] LO Y S, BORDEN M J, RAVI-CHANDAR K, et al. A phase-field model for fatigue crack growth[J]. Journal of the Mechanics and Physics of Solids, 2019, 132:103684
[32] BRYANT E C, SUN W C. A mixed-mode phase field fracture model in anisotropic rocks with consistent kinematics[J]. Computer Method in Applied Mechanics and Engineering, 2018, 342:561-584
[33] ZHOU S, ZHUANG X, RABCZUK T. Phase field modeling of brittle compressive-shear fractures in rock-like materials:a new driving force and a hybrid formulation[J]. Computer Method in Applied Mechanics and Engineering, 2019, 355:729-752
[34] XIE Y, KRAVCHENKO OG, PIPES RB, et al. Phase field modeling of damage in glassy polymers[J]. Journal of the Mechanics and Physics of Solids, 2016, 93:182-197
[35] TALAMINI B, MAO Y, ANAND L. Progressive damage and rupture in polymers[J]. Journal of the Mechanics and Physics of Solids, 2018, 111:434-457
[36] FENG D C, WU J Y. Phase-field regularized cohesive zone model (CZM) and size effect of concrete[J]. Engineering Fracture Mechanics, 2018, 197:66-79
[37] YANG Z J, LI B B, WU J Y. X-ray computed tomography images based phase-field modeling of mesoscopic failure in concrete[J]. Engineering Fracture Mechanics, 2019, 208:151-170
[38] ESPADAS E J J, DIJK N P V, ISAKSSON P. A phase-field model for strength and fracture analyses of fiber-reinforced composites[J]. Composites Science and Technology, 2019, 174:58-67
[39] QUINTANAS C A, REINOSO J, CASONIC E, et al. A phase field approach to simulate intralaminar and translaminar fracture in long fiber composite materials[J]. Composite Structures, 2019, 220:899-911
[40] LIU G, LI Q, MSEKH M A, et al. Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model[J]. Computational Materials Science, 2016, 121:35-47
[41] KUHN C, SCHLVTER A, MVLLER R. On degradation functions in phase field fracture models[J]. Computational Materials Science, 2015, 108:374-384
[42] GEORGE Z V, NAVID M. Nonlocal damage model using the phase field method:theory and applications[J]. International Journal of Solids and Structures, 2013, 50:3136-3151
[43] WU J Y, HUANG Y, NGUYEN P V. On the BFGS monolithic algorithm for the unified phase field damage theory[J]. Computer Method in Applied Mechanics and Engineering, 2020, 360:112704