论文:2022,Vol:40,Issue(5):962-969
引用本文:
高柏森, 黄玮, 王生楠, 张霜银, 陈先民. 增材制造Ti-6Al-4V合金断裂行为与应力三轴度关系研究[J]. 西北工业大学学报
GAO Baisen, HUANG Wei, WANG Shengnan, ZHANG Shuangyin, CHEN Xianmin. Relationship of fracture behavior and stress triaxiality of additive manufactured Ti-6Al-4V[J]. Journal of Northwestern Polytechnical University

增材制造Ti-6Al-4V合金断裂行为与应力三轴度关系研究
高柏森1, 黄玮1, 王生楠1, 张霜银1, 陈先民2
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 中国飞机强度研究所 科研管理部, 陕西 西安 710065
摘要:
研究应力三轴度与增材制造钛合金材料断裂行为的相关性,对分析增材制造钛合金的断裂失效过程有着重要的作用和意义。对光滑圆棒和缺口圆棒试件在准静态下进行单轴拉伸试验,结合数值仿真分析得到试件的应力三轴度分布和断裂应变,研究了增材制造钛合金在不同应力三轴度下的韧性断裂行为。通过扫描电子显微镜观察试件断口表面的形貌,分析不同应力三轴度下增材制造钛合金的断裂机理。研究发现,在中高应力三轴度范围内,增材制造钛合金的断裂应变随应力三轴度的升高而降低;缺口圆棒试件的起裂位置随缺口半径的减小从最小截面中心处逐渐转移至边缘处。
关键词:    增材制造钛合金    韧性断裂    应力三轴度    缺口圆棒试件    断口分析   
Relationship of fracture behavior and stress triaxiality of additive manufactured Ti-6Al-4V
GAO Baisen1, HUANG Wei1, WANG Shengnan1, ZHANG Shuangyin1, CHEN Xianmin2
1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Scientific Research Management Department, Aircraft Strength Research Institute, Xi'an 710065, China
Abstract:
It is significant to study the relationship between the stress triaxiality and the fracture behavior for analyzing the failure process of additive manufactured titanium alloy. This paper combined the tensile test of smooth round bar specimens and notched round bar specimens with the numerical simulation to obtain the stress triaxiality distribution and fracture strain in order to study fracture behavior of additive manufactured titanium under different stress triaxiality. Fracture analysis was proceeded by using scanning electronic microscope to analyze the correlation between the stress triaxiality and the fracture behavior. Results show that the fracture strain decreases while the stress triaxiality increases and the location of the crack initiation moves from the center to the edge of the minimum cross-section while the radius of the notch decrease.
Key words:    additive manufacturing titanium alloy    ductile fracture    stress triaxiality    notched bar specimen    fracture analysis   
收稿日期: 2021-12-15     修回日期:
DOI: 10.1051/jnwpu/20224050962
基金项目: 国家自然科学基金(12172292)资助
通讯作者: 黄玮(1979-),西北工业大学副教授,主要从事航空结构疲劳、断裂行为研究。e-mail:huangwei@nwpu.edu.cn     Email:huangwei@nwpu.edu.cn
作者简介: 高柏森(1997—),西北工业大学博士研究生,主要从事结构断裂行为研究。
相关功能
PDF(3638KB) Free
打印本文
把本文推荐给朋友
作者相关文章
高柏森  在本刊中的所有文章
黄玮  在本刊中的所有文章
王生楠  在本刊中的所有文章
张霜银  在本刊中的所有文章
陈先民  在本刊中的所有文章

参考文献:
[1] 王华明.高性能大型金属构件激光增材制造:若干材料基础问题[J].航空学报, 2014, 35(10):2690-2698 WANG Huaming. Materials'fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronauticaet Astronautica Sinca, 2014, 35(10):2690-2698(in Chinese)
[2] 易敏,常珂,梁晨光,等.增材制造微结构演化及疲劳分散性计算[J].力学学报, 2021, 53(12):3263-3273 YI Min, CHANG Ke, LIANG Chenguang, et al. Computational study of evolution and fatigue dispersity of microstructures by additive manufacturing[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12):3263-3273(in Chinese)
[3] GONG H, RAFI K, GU H, et al. Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes[J]. Additive Manufacturing, 2014, 1/2/3/4:87-98
[4] CARROLL B E, PALMER T A, BEESE A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing[J]. Acta Materialia, 2015, 87:309-320
[5] WANG P, TAN X P, HE C Y, et al. Scanning optical microscopy for porosity quantification of additively manufactured components[J]. Additive Manufacturing, 2018, 21:350-358
[6] SAMES W J, LIST F A, PANNALA S, et al. The metallurgy and processing science of metal additive manufacturing[J]. International Materials Reviews, 2016, 61(5):315-360
[7] VILARO T, COLIN C, BARTOUT J D. As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting[J]. Metallurgical and Materials Transactions A, 2011, 42:3190-3199
[8] GU H, GONG H, PAL D, et al. Influences of energy density on porosity and microstructure of selective laser melted 17-4PH stainless steel[C]//24th Annual International Solid Freeform Fabrication Symposium, Austin, TX, 2013
[9] BISWAL R, ZHANG X, SYED A K, et al. Criticality of porosity defects on the fatigue performance of wire+arc additive manufactured titanium alloy[J]. International Journal of Fatigue, 2019, 122:208-217
[10] KRAMER S L B, JONES A, MOSTAFA A, et al. The third sandia fracture challenge:predictions of ductile fracture in additively manufactured metal[J]. International Journal of Fracture, 2019, 218:5-61
[11] JIANG W, LI Y Z and SU J. Modified GTN model for a broad range of stress states and application to ductile fracture[J]. European Journal of Mechanics-A/Solids, 2016, 57:132-148
[12] 衣海娇,甄莹,曹宇光,等. 6061-T6铝合金断裂应变与应力三轴度关系研究[J].机械强度, 2020, 42:551-558 YI Haijiao, ZHEN Ying, CAO Yuguang, et al. Research on the relationship between fracture strain and triaxiality of 6061-T6 aluminum alloy[J]. Journal of Mechanical Strength, 2020, 42:551-558(in Chinese)
[13] 张霜银,索涛,李玉龙. SEM原位加载研究激光增材制造TC4合金变形破坏机制[J].西北工业大学学报, 2020, 38(5):1025-1029 ZHANG Shuangyin, SUO Tao, LI Yulong. In-situ SEM study on deformation and failure mechanism of TC4 titanium alloy by laser additive manufacturing[J]. Journal of Northwestern Polytechnical University, 2020, 38(5):1025-1029(in Chinese)
[14] 艾霄鹏.增材制造TC4钛合金力学性能的各向异性研究[D].西安:西北工业大学, 2019 AI Xiaopeng. Effects of anisotropy on mechanical properties of TC4 titanium alloy fabricated by additive manufacturing[D]. Xi'an:Northwestern Polytechnical University, 2019(in Chinese)
[15] BRIDGMAN P W. Studies in large plastic flow and fracture[M]. New York:McGraw-Hill, 1952
[16] ALGARNI M. Notch factor correction using stress triaxiality of plane-stress state in high-cycle fatigue[J].International Journal of Fatigue, 2019, 128:105204