论文:2022,Vol:40,Issue(4):837-844
引用本文:
宋超, 刘红阳, 周铸, 罗骁, 李伟斌. 基于生成拓扑映射的气动外形反设计方法研究[J]. 西北工业大学学报
SONG Chao, LIU Hongyang, ZHOU Zhu, LUO Xiao, LI Weibin. Inverse design of aerodynamic configuration using generative topographic mapping[J]. Northwestern polytechnical university

基于生成拓扑映射的气动外形反设计方法研究
宋超, 刘红阳, 周铸, 罗骁, 李伟斌
中国空气动力研究与发展中心 计算空气动力研究所, 四川 绵阳 621000
摘要:
气动外形反设计方法存在难以给定合理目标压力分布,强烈依赖设计经验等问题,难以适应现代工程设计需求。针对反设计方法的不足,结合机器学习与全局优化方法,发展了一种高效鲁棒的气动外形反设计方法。该方法利用生成拓扑映射(generative topographic mapping,GTM)模型建立气动外形及其压力分布组合数据和低维隐空间变量的映射关系,并利用遗传算法在隐空间寻优,同时得到最优压力分布与对应气动外形。GTM能够建立高精度的映射关系,设计过程不需要流场解算参与迭代,极大提高了设计效率。所提方法充分利用了遗传算法与GTM方法的特点,不要求目标压力分布具有实际物理意义,减小了对设计经验的依赖程度。分别针对低速翼型、跨声速翼型、三维层流短舱开展了反设计研究,设计算例表明,该方法设计鲁棒性好,能够高效率收敛到目标压力分布,具有良好的工程应用价值。
关键词:    反设计    生成拓扑映射    机器学习    遗传算法    压力分布   
Inverse design of aerodynamic configuration using generative topographic mapping
SONG Chao, LIU Hongyang, ZHOU Zhu, LUO Xiao, LI Weibin
Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China
Abstract:
The inverse design method of aerodynamic configuration is hard to give a reasonable pressure distribution, and strongly rely on experience of designers. The method has been difficult to adapt to the needs of modern aircraft design. Aiming at the shortcoming of the method, an efficient and robust aerodynamic configuration inverse design method is developed, employing knowledge of machine learning methods and optimization methods. The present method establishes the mapping between the high dimensional data obtained from aerodynamic shape and pressure distribution and the variables in the latent space. Then, the global optimization is carried out in the latent space by using the genetic algorithm. The optimum pressure distribution and the corresponding shape can be obtained. Through the the GTM model with high precision, there is not necessary for the flow solver in the whole iterative process, thus the design efficiency can be enhanced. Besides, by taking the advantage of optimization method, the target pressure distribution can be given in a very flexible way, and does not need to be physically meaningful. This feature can reduce reliance on the design experience. Airfoils in low speed and transonic flow and a three-dimensional laminar nacelle design cases are carried out. It is shown that the method robustly and efficiently converges to the target pressure, and has good engineering application potential.
Key words:    inverse design    generative topographic mapping    machine learning    genetic algorithm    pressure distribution   
收稿日期: 2021-10-09     修回日期:
DOI: 10.1051/jnwpu/20224040837
通讯作者: 周铸(1973-),中国空气动力研究与发展中心研究员,主要从事飞行器设计、计算流体力学研究。e-mail:zhouzhu@tom.com     Email:zhouzhu@tom.com
作者简介: 宋超(1990-),中国空气动力研究与发展中心助理研究员,主要从事飞行器设计优化研究。
相关功能
PDF(3825KB) Free
打印本文
把本文推荐给朋友
作者相关文章
宋超  在本刊中的所有文章
刘红阳  在本刊中的所有文章
周铸  在本刊中的所有文章
罗骁  在本刊中的所有文章
李伟斌  在本刊中的所有文章

参考文献:
[1] LIGHTHILL M J. A new method of two-dimensional aerodynamics design[R]. R & M, No.2112, 1945
[2] TAKANASHI S. Iterative three-dimensional transonic wing design using integral equations[J]. Journal of Aircraft, 1985, 22(8): 655-660
[3] 詹浩, 华俊, 张仲寅. 基于余量修正原理的多翼面气动力反设计方法[J]. 航空学报, 2003, 24(5):411-413 ZHAN Hao, HUA Jun, ZHANG Zhongyin. Design of multi-lifting surfaces based on iterative residual correction[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(5): 411-413 (in Chinese)
[4] 李焦赞. 基于目标压力分布优化翼型反设计方法研究[D]. 西安:西北工业大学, 2007 LI Jiaozan. Study on inverse design method of airfoil based on optimization of target pressure distribution[D]. Xi'an: Northwestern Polytechnical University, 2007 (in Chinese)
[5] BUI-THANH T, DAMODARAN M, WILLCOX K. Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition[J]. AIAA Journal, 2004, 42(8): 1501-1516
[6] 白俊强, 邱亚松, 华俊. 改进型Gappy POD翼型反设计方法[J]. 航空学报, 2013, 34(4): 762-771 BAI Junqiang, QIU Yasong, HUA Jun. Improved airfoil inverse design method based on Gappy POD[J]. Acta Aeronautica et Astronautica Sinica,2013,34(4): 762-771 (in Chinese)
[7] 单志辉. 基于高斯过程回归的翼型快速设计研究[D]. 南京:南京航空航天大学, 2011 SHAN Zhihui. Fast airfoil design based on Gaussian process regression[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011 (in Chinese)
[8] SUN G, SUN Y, WANG S. Artificial neural network based inverse design: airfoils and wings[J]. Aerospace Science and Technology, 2015, 42: 415-428
[9] SEKAR V, ZHANG M, SHU C, et al. Inverse design of airfoil using a deep convolutional neural network[J]. AIAA Journal, 2019, 57(3): 993-1003
[10] BISHOP C M, SVENSÉN M, WILLIAMS C K I. GTM: the generative topographic mapping[J]. Neural Computation, 1998, 10(1): 215-234
[11] KANEKO H. Data visualization, regression, applicability domains and inverse analysis based on generative topographic mapping[J]. Molecular Informatics, 2019, 38(3): 1800088
[12] KANEKO H. Sparse generative topographic mapping for both data visualization and clustering[J]. Journal of Chemical Information and Modeling, 2018, 58(12): 2528-2535
[13] LIN A. Generative topographic mapping: a powerful tool for big chemical data visualization, analysis and modeling[D]. Strasbourg: Université de Strasbourg, 2019
[14] VISWANATH A, FORRESTER A, KEANE A J . Dimension reduction for aerodynamic design optimization[J]. AIAA Journal, 2011, 49(6):1256-1266
[15] VISWANATH A, FORRESTER A, KEANE A J . Constrained design optimization using generative topographic mapping[J]. AIAA Journal, 2014, 52(5): 1010-1023
[16] VELLIDO A, MARTÍ E, COMAS J, et al. Exploring the ecological status of human altered streams through generative topographic mapping[J]. Environmental Modelling & Software, 2007, 22(7): 1053-1065
[17] ANDRADE A O, NASUTO S, KYBERD P, et al. Generative topographic mapping applied to clustering and visualization of motor unit action potentials[J]. Biosystems, 2005, 82(3): 273-284
[18] BISHOP C M. Neural networks for pattern recognition[M]. UK: Oxford University Press, 1995
[19] KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1): 142-158
[20] 黄江涛, 周铸, 刘刚, 等. 飞行器气动/结构多学科延迟耦合伴随系统数值研究[J]. 航空学报, 2018, 39(5): 121731 HUANG Jiangtao, ZHOU Zhu, LIU Gang, et al. Numerical study of aerostructural multidisciplinary lagged coupled adjoint system for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 121731 (in Chinese)