论文:2022,Vol:40,Issue(3):661-669
引用本文:
黄晓婷, 孙鹏楠, 吕鸿冠, 殷晓瑞, 董嘉徐. 翼型绕流的多级分辨率光滑粒子流体动力学数值模拟研究[J]. 西北工业大学学报
HUANG Xiaoting, SUN Pengnan, LYU Hongguan, YIN Xiaorui, DONG Jiaxu. Study on the vidcous flow around foils with a multi-resolution smooth particle hydrodynamics method[J]. Northwestern polytechnical university

翼型绕流的多级分辨率光滑粒子流体动力学数值模拟研究
黄晓婷1,2, 孙鹏楠1,2, 吕鸿冠1,2, 殷晓瑞1,2, 董嘉徐1
1. 中山大学 海洋工程与技术学院, 广东 珠海 519082;
2. 南方海洋科学与工程广东省实验室(珠海), 广东 珠海 519082
摘要:
应用考虑流场真实黏性的多级粒子分辨率光滑粒子流体动力学(smoothed particle hydrodynamics,SPH)方法对不同雷诺数下的翼型绕流问题开展了数值模拟和验证。在SPH粒子法框架中实现拉格朗日拟序结构可视化,实现漩涡细节的重现。针对SPH模拟高雷诺数翼型绕流时出现的数值不稳定性,采用张力不稳定性控制技术和粒子位移修正技术加以克服,提高了压力与速度场的计算精度。计算结果表明:SPH方法能够实现翼型绕流问题速度场与压力场的精确计算,并进行良好的受力监测与预报。相对于传统基于欧拉涡量场的漩涡捕捉方法,SPH方法中捕捉的拉格朗日拟序结构也能有效地呈现流场漩涡特征和演化过程,说明SPH方法在模拟考虑真实黏性边界层和漩涡运动的流体动力学问题研究中具有一定的特色。此外,拍动翼型绕流的数值模拟结果还体现了SPH方法在处理带运动边界绕流问题的便利性。
关键词:    δ+-SPH    多级粒子分辨率技术    拉格朗日拟序结构    翼型绕流   
Study on the vidcous flow around foils with a multi-resolution smooth particle hydrodynamics method
HUANG Xiaoting1,2, SUN Pengnan1,2, LYU Hongguan1,2, YIN Xiaorui1,2, DONG Jiaxu1
1. School of Ocean Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China;
2. Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai), Zhuhai 519082, China
Abstract:
Considering the real viscosity of the fluid, the multi-resolution smooth particle hydrodynamics method is applied to numerically simulate and verify the flow around the foils at different Reynold numbers. In the framework of SPH, the Lagrangian coherent structure can be easily visualized, thus the details of the vortex can be reproduced. In order to overcome the SPH numerical instability when simulating the flow around airfoil at high Reynolds number, the tension instability control and the particle shifting techniques are adopted, thus the numerical accuracy of the pressure and velocity fields are much improved. The analysis of the flow around the foil shows that the SPH method can accurately calculate the velocity and pressure fields, and perform good force monitoring and prediction. In addition, compared to the traditional vortex capturing method based on Euler velocity field, the Lagrangian coherent structure can also effectively reveal the characteristics and the evolution of vortex. The study indicates that the SPH method owns distinguished advantages in the simulation of fluid dynamics problems considering the real viscous boundary layer and vortex motion. In addition, the investigation of the flow around flapping foil demonstrates the capability of the SPH method for simulation with moving boundaries.
Key words:    delta-plus SPH method    multi-resolution technology    Lagrangian coherent structure    flow around foil   
收稿日期: 2021-09-03     修回日期:
DOI: 10.1051/jnwpu/20224030661
基金项目: 国家自然科学基金(12002404,52171329)、广东省自然科学基金(2022A1515012084)及中山大学中央高校基本科研业务费专项基金资助
通讯作者: 孙鹏楠(1991—),中山大学副教授,主要从事流固耦合动力学研究。e-mail:sunpn@mail.sysu.edu.cn     Email:sunpn@mail.sysu.edu.cn
作者简介: 黄晓婷(1998—),中山大学硕士研究生,主要从事光滑粒子流体动力学理论与方法研究。
相关功能
PDF(4262KB) Free
打印本文
把本文推荐给朋友
作者相关文章
黄晓婷  在本刊中的所有文章
孙鹏楠  在本刊中的所有文章
吕鸿冠  在本刊中的所有文章
殷晓瑞  在本刊中的所有文章
董嘉徐  在本刊中的所有文章

参考文献:
[1] AONO H, NONOMURA T, ANYOJI M, et al. A numerical study of the effects of airfoil shape on low Reynolds number aerodynamics[C]//Proceedings of the Eighth International Conference on Engineering Computational Technology, Dubrovnik Croatia, 2012
[2] ANYOJI M, NONOMURA T, AONO H, et al. Computational and experimental analysis of a high-performance airfoil under low-Reynolds-number flow condition[J]. Journal of Aircraft, 2014,51(6): 1864-1872
[3] 季斌, 程怀玉, 黄彪, 等. 空化水动力学非定常特性研究进展及展望[J]. 力学进展, 2019,49(1): 428-479 JI Bin, CHENG Huaiyu, HUANG Biao, et al. Research progresses and prospects of unsteady hydrodynamics characteristics for cavitation[J]. Advances in Mechanics, 2019, 49(1): 428-479 (in Chinese)
[4] MITTAL R, DONG H, BOZKURTTAS M. A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries[J]. Journal of Computational Physics, 2008, 227(10): 4825-4852
[5] 张驰, 张雨新, 万德成. SPH方法和MPS方法模拟溃坝问题的比较分析[J]. 水动力学研究与进展, 2011,26(6): 736-746 ZHANG Chi, ZHANG Yuxin, WAN Decheng. Comparative study of SPH and MPS methods for numerical simulations of dam breaking problems[J]. Chinese Journal of Hydrodynamics, 2011,26(6): 736-746 (in Chinese)
[6] LIU M B, LIU G R. Smoothed particle hydrodynamics(SPH): an overview and recent developments[J]. Archives of Computational Methods in Engineering, 2010, 17: 25-76
[7] 杨秋足, 徐绯, 王璐, 等. 一种基于黎曼解处理大密度比多相流SPH的改进算法[J]. 力学学报, 2019, 51(3): 730-742 YANG Qiuzu, XU Fei, WANG Lu, et al.. An improved SPH algorithm for large density ratios multiphase flows based on riemann solution[J]. Chinese Journal of Theoretical and Applied, 2019, 51(3): 730-742 (in Chinese)
[8] 张云云, 任立群, 薄夫萍, 等. 基于SPH消力池内陡坡水跃的数值模拟[J]. 水利水电技术, 2019, 551(9): 130-136 ZHANG Yunyun, REN Liqun, BO Fuping, et al. SPH method-based numerical simulation of steep-slope hydraulic jump in stilling pool[J]. Water Resources and Hydropower Engineering, 2019, 551(9): 130-136 (in Chinese)
[9] 郑温刚, 王媛, 张云云, 等. 基于SPH方法的阶梯式溢洪道消能特性研究[J]. 水利水电技术, 2020, 51(12): 8 ZHENG Wengang, WANG Yuan, ZHANG Yunyun, et al. SPH method-based study on energy dissipation characteristics of stepped spillway[J]. Water Resources and Hydropower Engineering, 2020, 51(12): 8 (in Chinese)
[10] SUN P N, MING F R, ZHANG A M, et al. Viscous flow past a NACA0012 foil below a free surface through the delta-plus-SPH method[J]. International Journal of Computational Methods, 2018,16(2): 1846007
[11] HUANG Xiaoting, SUN Pengnan, LYU Hongguan, et al. Numerical investigations on bionic propulsion problems using the multi-resolution delta-plus SPH model[J]. European Journal of Mechanics-B/Fluids, 2022, 915: 106-121
[12] SHADLOO M S, ZAINALI A, YILDIZ M, et al. A robust weakly compressible SPH method and its comparison with an incompressible SPH[J]. International Journal for Numerical Methods in Engineering, 2012,89(8): 939-956
[13] HUANG C, LONG T, LI S M, et al. A kernel gradient-free SPH method with iterative particle shifting technology for modeling low-Reynolds flows around airfoils[J]. Engineering Analysis with Boundary Elements, 2019,106: 571-587
[14] ANTUONO M, COLAGROSSI A, MARRONE S. Numerical diffusive terms in weakly-compressible SPH schemes[J]. Computer Physics Communications, 2012,183(12): 2570-2580
[15] SUN P N, COLAGROSSI A, MARRONE S, et al. Multi-resolution delta-plus-SPH with tensile instability control: towards high reynolds number flows[J]. Computer Physics Communications, 2018,224: 63-80
[16] WENDLAND H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree[J]. Advances in Computational Mathematics, 1995,4(1): 389-396
[17] LIND S J, XU R, STANSBY P K, et al. Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves[J]. Journal of Computational Physics, 2012,231(4): 1499-1523
[18] MARRONE S, COLAGROSSI A, ANTUONO M, et al. An accurate SPH modeling of viscous flows around bodies at low and moderate Reynolds numbers[J]. Journal of Computational Physics, 2013,245: 456-475
[19] GEORGE Haller. Langrangian coherent structures[J]. Annual Review of Fluid Mechanics, 2015, 47(1): 137-162
[20] SUN P N, COLAGROSSI A, MARRONE S, et al. Detection of Lagrangian coherent structures in the SPH framework[J]. Computer Methods in Applied Mechanics & Engineering, 2016,305(15): 849-868
[21] CHIRON L, OGER G, DELEFFE M, et al. Analysis and improvements of adaptive particle refinement(APR) through CPU time, accuracy and robustness considerations[J]. Journal of Computational Physics, 2018,354: 552-575
[22] BOUARD R, COUTANCEAU M. The early stage of development of the wake behind an impulsively started cylinder for 40<Re<104[J]. Journal of Fluid Mechanics, 1980, 101(3): 583-607
[23] OHTAKE Tomohisa, TAGAI Rie, KANDA Shou, et al. Flow field phenomena on Ishii airfoil at low Reynolds numbers[C]//45th Fluid Dynamics Conference/Aerospace Numerical Simulation Symposium, 2013, Tokyo
[24] LEE D, NONOMURA T, OYAMA A, et al. Comparative studies of numerical methods for evaluating aerodynamic characteristics of two-dimensional airfoil at low Reynolds numbers[J]. International Journal of Computational Fluid Dynamics, 2017,31(1): 57-67
[25] SCHNIPPER T, ANDERSEN A, BOHR T. Vortex wakes of a flapping foil[J]. Journal of Fluid Mechanics, 2009, 633: 411-423