论文:2022,Vol:40,Issue(3):538-548
引用本文:
邹浩然, 王三民, 何前进, 李义之, 陈鹏. 修形人字齿轮副时变啮合刚度的解析算法[J]. 西北工业大学学报
ZOU Haoran, WANG Sanmin, HE Qianjin, LI Yizhi, CHEN Peng. Analytical algorithm for time-varying meshing stiffness of modified herringbone gear pair[J]. Northwestern polytechnical university

修形人字齿轮副时变啮合刚度的解析算法
邹浩然, 王三民, 何前进, 李义之, 陈鹏
西北工业大学 机电学院, 陕西 西安 710072
摘要:
将切片法与势能法相结合,提出了一种考虑轴向力和修形的人字齿轮副啮合刚度解析算法,并将计算结果与有限元和ISO计算结果进行比较,验证该算法的准确性。利用该算法分析修形对人字齿轮副啮合刚度的影响,计算结果表明:齿廓修形量、修形长度和齿向修形量的增加,均使单对轮齿啮合刚度及人字齿轮副时变啮合刚度减小;时变啮合刚度均值随着齿廓修形量增加而减小,随着齿廓修形长度和齿向修形量的增加先下降后平稳;时变啮合刚度方差随着小齿轮齿廓修形量增加先增大后减小,随着大齿轮齿廓修形量增加而减小,随着齿廓修形长度增加先增大后减小,随着小齿轮齿向修形量增加而减小,随着大齿轮齿向修形量增加先减小后增大。
关键词:    人字齿轮    啮合刚度    切片法    势能法    修形   
Analytical algorithm for time-varying meshing stiffness of modified herringbone gear pair
ZOU Haoran, WANG Sanmin, HE Qianjin, LI Yizhi, CHEN Peng
School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
This paper jointly uses the slicing method and the potential energy method to propose an analytical algorithm that considers the meshing stiffness of the modified herringbone gear pair and its axial force. The calculation results are compared with the finite element and ISO calculation results to verify the accuracy of the analytical algorithm. The algorithm is used to analyze the influence of modification on meshing stiffness of the herringbone gear pair. The calculation results show that the modification length, axial modification and the meshing stiffness of the single pair of herringbone gears and the time-varying meshing stiffness of the herringbone gear pair decrease with the increase of tooth profile modification. The mean value of time-varying meshing stiffness decreases with the increase of tooth profile modification. It decreases first and then tends to be stable with the increase of tooth profile modification length and axial modification. The variance of time-varying meshing stiffness increases first and then decreases with the increase of tooth profile modification of the pinion. It decreases with the increase of tooth profile modification of the herringbone gear, increases first and then decreases and then tends to be stable with the increase of tooth profile modification length. The variance decreases with the increase of axial modification of the pinion. It decreases first and then increases and tends to be stable with the increase of axial modification of the herringbone gear.
Key words:    herringbone gear    meshing stiffness    slicing method    potential energy method    modification   
收稿日期: 2021-08-12     修回日期:
DOI: 10.1051/jnwpu/20224030538
通讯作者: 王三民(1960—),西北工业大学教授,主要从事机械系统动力学仿真研究。e-mail:wangsami@nwpu.edu.cn     Email:wangsami@nwpu.edu.cn
作者简介: 邹浩然(1994—),西北工业大学博士研究生,主要从事齿轮系统动力学研究。
相关功能
PDF(4028KB) Free
打印本文
把本文推荐给朋友
作者相关文章
邹浩然  在本刊中的所有文章
王三民  在本刊中的所有文章
何前进  在本刊中的所有文章
李义之  在本刊中的所有文章
陈鹏  在本刊中的所有文章

参考文献:
[1] 李润芳, 王建军. 齿轮系统动力学[M]. 北京: 科学出版社, 1997: 11-48 LI Runfang, WANG Jianjun. Systematic dynamics of gear[M]. Beijing: Science Press, 1997: 11-48 (in Chinese)
[2] 常乐浩, 刘更, 郑雅萍, 等. 一种基于有限元法和弹性接触理论的齿轮啮合刚度改进算法[J]. 航空动力学报, 2014, 29(3): 682-688 CHANG Lehao, LIU Geng, ZHANG Yaping, et al. A modified method for determining mesh stiffness of gears based on finite element method and contact theory[J]. Journal of Aerospace Power, 2014, 29(3): 682-688 (in Chinese)
[3] 刘文, 李锐, 张晋红, 等. 斜齿轮时变啮合刚度算法修正及影响因素研究[J]. 湖南大学学报, 2018, 45(2): 1-10 LIU Wen, LI Rui, ZHANG Jinhong, et al. Study on correction algorithm of time-varying mesh stiffness of helical gears and its influencing factors[J]. Journal of Hunan University, 2018, 45(2): 1-10 (in Chinese)
[4] 毛汉成, 傅琳, 于广滨, 等. 考虑轮齿修形的变厚齿轮啮合刚度数值计算[J]. 计算机集成制造系统, 2022, 28(2): 1-10 MAO Hancheng, FU Lin, YU Guangbin, et al. Numerical calculation of meshing stiffness for the beveloid gear with profile modification[J]. Computer Integrated Manufacturing Systems, 2022, 28(2): 1-10 (in Chinese)
[5] 冯正玖, 靳广虎, 朱如鹏. 基于LTCA的直齿轮啮合刚度的计算与分析[J]. 机械传动, 2019, 43(8): 78-83 FENG Zhengjiu, JIN Guanghu, ZHU Rupeng. Calculation and analysis of mesh stiffness of spur gear based on LTCA[J]. Journal of Mechanical Transmission, 2019, 43(8): 78-83 (in Chinese)
[6] DAI He, LONG Xinhua, CHEN Feng, et al. An improved analytical model for gear mesh stiffness calculation[J]. Mechanism and Machine Theory, 2021, 159: 1-15
[7] HUI Ma, XU Pang, FENG Ranjiao, et al. Improved time-varying mesh stiffness model of cracked spur gears[J]. Engineering Failure Analysis, 2015, 55: 271-287
[8] 魏静, 赖育彬, 秦大同, 等. 齿廓修形斜齿轮副啮合刚度解析计算模型[J]. 振动与冲击, 2018, 37(10): 94-101 WEI Jing, LAI Yubin, QIN Datong, et al. Analytical model of the mesh stiffness of helical gear pair after tooth profile modification[J]. Journal of Vibration and Shock, 2018, 37(10): 94-101 (in Chinese)
[9] 王峰, 方宗德, 李声晋. 斜齿轮动力学建模中啮合刚度处理与对比验证[J]. 振动与冲击, 2014, 33(6): 13-17 WANG Feng, FANG Zongde, LI Shengjin. Treatment and contrast verification of meshing stiffness in dynamic model of helical gear[J]. Journal of Vibration and Shock, 2014, 33(6): 13-17 (in Chinese)
[10] 杨长辉, 徐涛金, 许洪斌, 等. 基于Weber能量法的直齿轮时变啮合刚度数值计算[J]. 机械传动, 2015, 39(2): 59-62 YANG Changhui, XU Taojin, XU Hongbin, et al. Numerical calculation of time-varying meshing stiffness of spur gears based on Weber's energy method[J]. Journal of Mechanical Transmission, 2015, 39(2): 59-62 (in Chinese)
[11] 孟宗, 石桂霞, 王福林, 等. 基于时变啮合刚度的裂纹故障齿轮振动特征分析[J]. 机械工程学报, 2020, 56(17): 108-115 MENG Zong, SHI Guixia, WANG Fulin, et al. Vibration characteristic analysis of cracked faulty gears based on time-varying meshing stiffness[J]. Journal of Mechanical Engineering, 2020, 56(17): 108-115 (in Chinese)
[12] 林腾蛟, 郭松龄, 赵子瑞, 等. 裂纹故障对斜齿轮时变啮合刚度及振动响应的影响分析[J]. 振动与冲击, 2019, 38(16): 29-36 LIN Tengjiao, GUO Songling, ZHAO Zirui, et al. Influence of crack faults on the time-varying meshing stiffness and vibration response of helical gears[J]. Journal of Vibration and Shock, 2019, 38(16): 29-36 (in Chinese)
[13] LIN T, OU H, LI R. A finite element method for 3D static and dynamic contact/impact analysis of gear drives[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(9/10/11/12): 1716-1728
[14] ZOUARI S, MAATAR M, FAKHFAKH T, et al. Three-dimensional analyses by finite element method of a spur gear: effect of cracks in the teeth foot on the mesh stiffness[J]. Journal of Failure Analysis and Prevention, 2007, 7(6): 475-481
[15] MA H, ZENG J, FENG R, et al. An improved analytical method for mesh stiffness calculation of spur gears with tip relief[J]. Mechanism and Machine Theory, 2016, 98: 64-80
[16] CHANG L, LIU G, WU L. A robust model for determining the mesh stiffness of cylindrical gears[J]. Mechanism and Machine Theory, 2015, 87: 93-114
[17] CUI L, ZHAI H, ZHANG F. Research on the meshing stiffness and vibration response of cracked gears based on the universal equention of gear profile[J]. Mechanism and Machine Theory, 2015, 94: 80-95
[18] CHEN Zaigang, SHAO Yimin. Dynamic simulation of spur gear with tooth root crack propagating along tooth width and crack depth[J]. Engineering Failure Analysis, 2011, 18(8): 2149-2164.
[19] YI Yanga, HUA Niaoqing, TANG Jinyuan. Dynamic analysis for a spur geared rotor system with tooth tip chipping based on an improved time-varying mesh stiffness model[J]. Mechanism and Machine Theory,2021,165:1-27
[20] 王峰, 朱彦霖, 方宗德, 等. 齿面修形对人字齿轮啮合刚度影响分析与试验研究[J]. 振动与冲击, 2018, 37(1): 40-46 WANG Feng, ZHU Yanlin, FANG Zongde, et al. Theoretical and experimental investigation on the effect of teeth modification on the meshing stiffness of herringbone gear system[J]. Journal of Vibration and Shock, 2018, 37(1): 40-46 (in Chinese)
[21] 林腾蛟, 陈梦寒, 杨金. 齿廓修形人字齿轮副时变啮合刚度计算方法[J]. 振动与冲击, 2021, 40(9):94-101 LIN Tengjiao, CHEN Menghan, YANG Jin. Calculation method of time-varying meshing stiffness of herringbone gear pair with tooth profile modification[J]. Journal of Vibration and Shock, 2021,40(9): 94-101 (in Chinese)
[22] 齿轮手册编委会. 齿轮手册[M]. 北京: 机械工业出版社, 2000: 143-150 Gear Manual Editorial Board. Gear Handbook[M]. Beijing: China Machine Press, 2000: 143-150 (in Chinese)
[23] WANG Qibin, ZHAO Bo, FU Yang, et al. An improved time-varying mesh stiffness model for helical gear pairs considering axial mesh force component[J]. Mechanical Systems and Signal Processing, 2018, 16: 413-429
[24] WANG Siyu, ZHU Rupeng. An improved mesh stiffness model of helical gear pair considering axial mesh force and friction force influenced by surface roughness under EHL condition[J]. Applied Mathematical Modelling, 2022, 102: 453-471
相关文献:
1.袁冰, 常山, 刘更, 刘岚, 常乐浩.斜齿轮修形对负载扭矩和啮合错位的敏感性[J]. 西北工业大学学报, 2018,36(6): 1085-1092
2.袁冰, 常山, 吴立言, 刘更, 陈策.对角修形对斜齿轮系统准静态及动态特性的影响研究[J]. 西北工业大学学报, 2017,35(2): 232-239
3.张玲玉, 徐颖强, 许璠, 秦宇飞, 陈仙亮.含齿根裂纹的非标齿轮啮合刚度改进算法及动态响应分析[J]. 西北工业大学学报, 2015,33(6): 956-961