论文:2022,Vol:40,Issue(3):485-492
引用本文:
程宇轩, 周洲, 王正平. 无人机重力投放展开过程研究[J]. 西北工业大学学报
CHENG Yuxuan, ZHOU Zhou, WANG Zhengping. Research on deployment process of gravitational airdrop UAV[J]. Northwestern polytechnical university

无人机重力投放展开过程研究
程宇轩, 周洲, 王正平
西北工业大学 航空学院, 陕西 西安 710072
摘要:
空基重力投放类无人机由于发射平台的空间限制,投放前需要将机翼进行收拢。在机翼收拢投放的过程中,无人机的动力学模型会呈现多刚体、多自由度特点,无人机的气动特性相对于巡航阶段也有较大差距,传统的飞行器动力学建模方法不再适用。建立了基于拉格朗日方程的空基重力投放无人机多体动力学模型,针对无人机展开过程的气动力变化,引入机翼与机身之间夹角为新变量,建立了无人机展开阶段的非线性气动模型,并通过与软件计算结果的对比验证了气动模型的可靠性。基于所得气动模型及动力学模型,对无人机展开过程的动力学响应进行仿真,并对比了无人机在相同控制指令下展开过程对无人机后续拉起阶段的影响,对重力投放的动力学和运动学特性进行了研究与探索。将仿真结果与试验数据进行对比,说明所建立的多体动力学模型能够准确描述无人机在投放展开及后续改出阶段的动态响应,可为从事相关型号的设计、试验和使用的技术人员提供参考。
关键词:    无人机    重力投放    多体动力学    拉格朗日方程   
Research on deployment process of gravitational airdrop UAV
CHENG Yuxuan, ZHOU Zhou, WANG Zhengping
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Due to the space limitation of the launching platform, the wings of the space-based gravity delivery UAV need to be folded before launching. In the process of wing folding and launching, the dynamics model of UAV will show the characteristics of multiple rigid bodies and multiple degrees of freedom, and the aerodynamic characteristics of UAV are also quite different from that of cruise stage, so the traditional aircraft dynamics modeling method is no longer applicable. In this paper, the multibody dynamics model of gravitational airdrop UAV is first built based on the Lagrange equation, and then according to the aerodynamic change on unmanned aerial vehicle in deploying process, the angle between the wing and the fuselage is introduced as a new variable, the UAV launch phase nonlinear aerodynamic model is established, and through comparison with software calculation results the reliability of the aerodynamic model is verified. Based on the aerodynamic model and dynamics model, the dynamic response of UAV deployment process is simulated, and the influence of UAV deployment process on UAV subsequent pulling stage under the same control instructions is compared, and the dynamics and kinematics characteristics of gravity launch are studied and explored. Finally, the simulation results are compared with the experimental data, indicating that the multi-body dynamic model established in this paper can accurately describe the dynamic response of UAV in the launching stage and the subsequent modification stage, which can provide reference for the technical personnel engaged in the design, test and use of related models.
Key words:    UAV    gravitational airdrop    multibody dynamics    Lagrange equation   
收稿日期: 2021-06-18     修回日期:
DOI: 10.1051/jnwpu/20224030485
基金项目: 陕西省自然科学基金(2022JQ-060)与陕西省重点研发计划(2021ZDLGY09-08)资助
通讯作者: 周洲(1966—),女,西北工业大学教授,主要从事无人机系统总体设计、飞行力学与控制等研究。e-mail:zhouzhou@nwpu.edu.cn     Email:zhouzhou@nwpu.edu.cn
作者简介: 程宇轩(1994—),西北工业大学博士研究生,主要从事无人机飞行力学与多体系统动力学研究。
相关功能
PDF(2358KB) Free
打印本文
把本文推荐给朋友
作者相关文章
程宇轩  在本刊中的所有文章
周洲  在本刊中的所有文章
王正平  在本刊中的所有文章

参考文献:
[1] SONG Wei, AI Bangcheng, ZHAO Xiaojian. Prediction and evaluation of the stage-separation compatibility of an internally carried air-launch vehicle [J]. Aerospace Science and Technology, 2020,105: 106001
[2] 杨华保, 马新, 李军鹏, 等. 空中发射及其关键技术[J]. 火力与指挥控制, 2008, 33(9): 15-17 YANG Huabao, MA Xin, LI Junpeng, et al. Air launching technology and its key technologies[J]. Fire Control and Command Control, 2008, 33(9): 15-17 (in Chinese)
[3] 叶帅辰, 姚晓先. 无人机自力起飞方式研究[J]. 火力与指挥控制, 2019, 44(4): 6-11 YE Shuaichen, YAO Xiaoxian. Self-power take-off method of unmanned aerial vehicles(UAVs)[J]. Fire Control and Command Control, 2019, 44(4): 6-11 (in Chinese)
[4] 杨磊. 空中发射分离过程的动力学问题研究[D]. 西安:西北工业大学,2018 YANG Lei. Study on the dynamic problem of air-launch in separation process[D]. Xi'an: Northwestern Polytechnical University, 2018 (in Chinese)
[5] XU Dan, HUI Zhe, LIU Yongqi, et al. Morphing control of a new bionic morphing UAV with deep reinforcement learning[J]. Aerospace Science and Technology,2019,92: 232-243
[6] 宋慧心, 金磊. 折叠翼飞行器的动力学建模与稳定控制[J]. 力学学报, 2020, 52(6): 1548-1559 SONG Huixin, JIN Lei. Dynamic modeling and stability control of folding wing aircraft[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1548-1559 (in Chinese)
[7] GRANT D, LIND R. Effects of time-varying inertias on flight dynamics of an asymmetric variable-sweep morphing aircraft[C]//AIAA Atmospheric Flight Mechanics Conference & Exhibit, 2013
[8] YUE T, WANG L, AI J. Longitudinal linear parameter varying modeling and simulation of morphing aircraft[J]. Journal of Aircraft, 2013, 50(6): 1673-1681
[9] SEIGLER T M, NEAL D A, BAE J S, et al. Modeling and flight control of large-scale morphing aircraft[J]. Journal of Aircraft, 2007, 44(4): 1077-1087
[10] OBRADOVIC B, SUBBARAO K. Modeling of flight dynamics of morphing wing aircraft[J]. Journal of Aircraft, 2011, 48(2): 391-402
[11] AMERI N, LOWENBERG M, FRISWELL M. Modelling the dynamic response of a morphing wing with active winglets[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit, 2007
相关文献:
1.吴翰, 王正平, 周洲, 王睿.多旋翼固定翼无人机多体动力学建模[J]. 西北工业大学学报, 2019,37(5): 928-934