论文:2022,Vol:40,Issue(2):281-287
引用本文:
陈晓, 曹勇, 黄桥高, 潘光. 非正弦升沉运动对扑翼自主推进的影响[J]. 西北工业大学学报
CHEN Xiao, CAO Yong, HUANG Qiaogao, PAN Guang. Nonsinusoidal motion effect on a self-propelled heaving foil[J]. Northwestern polytechnical university

非正弦升沉运动对扑翼自主推进的影响
陈晓1,2, 曹勇1,2, 黄桥高1,2, 潘光1,2
1. 西北工业大学 航海学院, 陕西 西安 710072;
2. 西北工业大学 无人水下运载技术工信部重点实验室, 陕西 西安 710072
摘要:
为了研究仿生推进机理以及仿生机器人,弥补非自主推进的局限性,采用数值方法耦合求解流体动力与扑翼运动,建立扑翼-流体耦合的自主推进计算模型,K作为波形调节参数使波形由三角波变为正弦波以及方波,数值模拟了2个频率-升沉幅值组合下非正弦升沉运动的自主推进性能,研究在静水中不同运动波形对自主推进速度、自主推进效率以及流场结构的影响。结果表明非正弦波形对自主推进运动影响很大,随着K的增大即越接近方波,速度振荡越剧烈,起动加速越快,前进位移与平均速度越大;随着K的减小,自主推进效率及能量利用率不断增大,研究结果对仿生水下航行器的设计有一定指导意义。
关键词:    扑翼    非正弦运动    自主推进    仿生推进    数值模拟   
Nonsinusoidal motion effect on a self-propelled heaving foil
CHEN Xiao1,2, CAO Yong1,2, HUANG Qiaogao1,2, PAN Guang1,2
1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China;
2. Key Laboratory of Unmanned, Underwater Vehicle Technology of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
In order to explore the mechanism of bionic propulsion and bionic robots, to make up for the limitations of traditional propulsion with a uniform incoming flow, numerical methods are used to couple fluid dynamics and flapping foil motions, and a flapping-fluid coupling self-propulsion calculation model is established in this paper. K is used as the waveform adjustment parameter to change the waveform from triangle wave to sine wave and square wave. The self-propulsion performances of non-sinusoidal heave motion under two frequency-heaving amplitude combinations are numerically simulated to study the influence of different motion waveforms on self-propulsion velocity, efficiency and flow field structure in still water. The results show that the non-sinusoidal waveform has a great influence on the self-propulsion. With the increase of K, the closer to the square wave, the more violent the speed oscillation, the faster the starting acceleration, the greater the forward displacement and the average speed, as K decreases, self-propulsion efficiency and energy utilization continue to increase. The results of this study have certain guiding significance for the design of bionic underwater vehicles.
Key words:    heaving foil    nonsinusoidal motion    self-propulsion    bionic propulsion    numerical simulation   
收稿日期: 2021-07-26     修回日期:
DOI: 10.1051/jnwpu/20224020281
基金项目: 国家自然科学基金(51879220,52001260)、国家重点研究发展计划(2016YFC0301300,2020YFB1313201)与中央高校基本科研业务费专项基金(3102019HHZY030019,3102020HHZY030018)资助
通讯作者: 曹勇(1988-),西北工业大学助理研究员,主要从事仿生航行器设计研究。e-mail:cao_yong@nwpu.edu.cn     Email:cao_yong@nwpu.edu.cn
作者简介: 陈晓(1993-),女,西北工业大学博士研究生,主要从事水动力学及水动力实验研究。
相关功能
PDF(2918KB) Free
打印本文
把本文推荐给朋友
作者相关文章
陈晓  在本刊中的所有文章
曹勇  在本刊中的所有文章
黄桥高  在本刊中的所有文章
潘光  在本刊中的所有文章

参考文献:
[1] 王国彪, 陈殿生, 陈科位, 等. 仿生机器人研究现状与发展趋势[J]. 机械工程学报, 2015, 51(13):27-44 WANG Guobiao, CHEN Diansheng, CHEN Kewei, et al. The current research status and development strategy on biomimetic robot[J]. Journal of Mechanical Engineering, 2015, 51(13):27-44 (in Chinese)
[2] PLATZER M F, JONES K D, YOUNG J, et al. Flapping wing aerodynamics:progress and challenges[J]. AIAA Journal, 2008, 46(9):2136-2149
[3] ANDERSEN A, BOHR T, SCHNIPPER T, et al. Wake structure and thrust generation of a flapping foil in two-dimensional flow[J]. Journal of Fluid Mechanics, 2017, 812:1-12
[4] DENG J, SUN L, TENG L, et al. The correlation between wake transition and propulsive efficiency of a flapping foil:a numerical study[J]. Physics of Fluids, 2016, 28(9):33-53
[5] YOUNG J, LAI J. Oscillation frequency and amplitude effects on the wake of a plunging airfoil[J]. AIAA Journal, 2004, 42(10):2042-2052
[6] VANDENBERGHE N, ZHANG J, CHILDRESS S. Symmetry breaking leads to forward flapping flight[J]. Journal of Fluid Mechanics, 2004, 506:147-155
[7] ALBEN S, SHELLEY M. Coherent locomotion as an attracting state for a free flapping body[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(32):1163-1166
[8] HU J, XIAO Q. Three-dimensional effects on the translational locomotion of a passive heaving wing[J]. Journal of Fluids and Structures, 2014, 46:77-88
[9] ARORA N, GUPTA A, SANGHI S, et al. Flow patterns and efficiency-power characteristics of a self-propelled, heaving rigid flat plate[J]. Journal of Fluids and Structures, 2016, 66:517-542
[10] LIN X, WU J, ZHANG T. Performance investigation of a self-propelled foil with combined oscillating motion in stationary fluid[J]. Ocean Engineering, 2019, 175:33-49
[11] BUREN T V, FLORYAN D, QUINN D, et al. Nonsinusoidal gaits for unsteady propulsion[J]. Physical Review Fluids, 2017, 2(5):1-13
[12] WU T Y. On theoretical modeling of aquatic and aerial animal locomotion[J]. Advances in Applied Mechanics, 2001, 38:291-353
[13] LU K, XIE Y H, ZHANG D. Numerical study of large amplitude, nonsinusoidal motion and camber effects on pitching airfoil propulsion[J]. Journal of Fluids and Structures, 2013, 36(1):184-194
[14] KERN S, KOUMOUTSAKOS P. Simulations of optimized anguilliform swimming[J]. Journal of Experimental Biloogy, 2006, 209:4841-4857
[15] QUINN D B, LAUDER G V, SMITS A J. Flexible propulsors in ground effect[J]. Bioinspiration & Biomimetics, 2014, 9(3):036008