Reθt转捩模型,PSP旋翼," />
论文:2022,Vol:40,Issue(2):253-260
引用本文:
庞超, 李猛, 高正红. 转捩过程对旋翼悬停模拟的影响分析与研究[J]. 西北工业大学学报
PANG Chao, LI Meng, GAO Zhenghong. Study on the effect of transition process on rotor hovering simulation[J]. Northwestern polytechnical university

转捩过程对旋翼悬停模拟的影响分析与研究
庞超, 李猛, 高正红
西北工业大学 航空学院, 陕西 西安 710072
摘要:
悬停状态是考察旋翼整体气动性能的重要状态之一。随着计算机技术及CFD技术的发展,基于“第一性原理”的数值模拟方法越来越多地被用于评估旋翼悬停性能。在使用基于RANS方程的数值模拟方法进行固定翼飞行器定常计算时,流动转捩现象对某些特定状态下流场及气动特性会产生巨大影响,因此在进行固定翼设计时要考虑流动转捩现象。然而转捩过程是否同样会影响旋翼非定常气动流场及气动特性,国内研究较少,因此有必要研究转捩过程对旋翼流场数值模拟的影响,为旋翼类飞行器的设计及评估提供参考。采用美国航空航天学会旋翼悬停工作组提出的PSP旋翼标模,利用结构化动态嵌套网格技术,在大拉力悬停和小拉力悬停状态下,分别进行全湍流模拟和转捩模拟计算并与试验结果进行了对比。对比结果显示,文中所采用的数值求解器对旋翼悬停效率的计算误差在5%之内。在考虑流动转捩后,由于桨叶表面存在层流区域,计算所得旋翼悬停效率高于全湍流假设下的预测值,而桨叶表面的层流区域与旋翼拉力大小有关。在流动转捩发生的区域,转捩过程会对桨叶截面压力分布以及桨叶展向扭矩分布产生明显影响,同时桨叶表面出现明显的流动分离现象。对于桨叶展向拉力分布和桨盘下方旋翼尾迹桨尖涡区域,转捩过程均不产生明显影响。
关键词:    旋翼悬停模拟    动态嵌套网格    Reθt转捩模型'))">γ-Reθt转捩模型    PSP旋翼   
Study on the effect of transition process on rotor hovering simulation
PANG Chao, LI Meng, GAO Zhenghong
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Hovering is one of important statuses to evaluate the aerodynamic performance of a rotor. With the development of the computer technology and CFD technique, the numerical methods based on the first principle are usually employed to evaluate the hovering performance of the rotor. The transition process will evidently affect the results from the RANS-based numerical simulations in some steady cases for the fixed wing aircrafts, which should be taken into consideration in the design process. But it's not clear whether the transition process would affect the numerical results for the rotor simulation. To provide the reference in designing and evaluating the rotorcraft, the effect of the transition process in the rotor simulation needs to be discussed further. The PSP rotor proposed by NASA is calculated using the in-house solver based on the overset grid in this paper. Simulations are performed with fully turbulent model as well as the transitional model and the results are compared to the experimental data. The results prove the superior ability to simulate the flow around a hovering rotor of the in-house solver. The relative errors of the numerical results are under 5%. The range of the laminar flow on the blade is proportional to the rotor thrust, which causes a higher Figure of Merit in transition simulation than the fully turbulent simulation. The sectional pressure distribution and torque distribution along the blade apparently suffer from the transition process, which doesn't affect the thrust distribution along the blade and the blade vortex wake flow under the rotor disk. An obvious flow separation on the surface of the blade can be observed in the transition simulation compared to the fully turbulent simulation.
Key words:    hovering simulation    dynamic overset grid    Reθt transition model'))">γ-Reθt transition model    PSP rotor   
收稿日期: 2021-07-02     修回日期:
DOI: 10.1051/jnwpu/20224020253
通讯作者: 高正红(1960-),女,西北工业大学教授,主要从事飞行器优化设计、飞行力学研究。e-mail:zgao@nwpu.edu.cn     Email:zgao@nwpu.edu.cn
作者简介: 庞超(1994-),西北工业大学博士研究生,主要从事计算流体力学研究。
相关功能
PDF(2865KB) Free
打印本文
把本文推荐给朋友 Reθt转捩模型|PSP旋翼”几篇好文章,特向您推荐。请复制下面地址到地址栏中进行访问:" name=neirong>
作者相关文章
庞超  在本刊中的所有文章
李猛  在本刊中的所有文章
高正红  在本刊中的所有文章

参考文献:
[1] 朱正, 招启军, 李鹏. 悬停状态共轴刚性双旋翼非定常流动干扰机理 优先出版[J]. 航空学报, 2016, 37(2):568-578 ZHU Zheng,ZHAO Qijun,LI Peng. Unsteady flow interaction mechanism of coaxial rigid rotors in hover[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):568-578 (in Chinese)
[2] 卢丛玲, 史勇杰, 徐国华,等. 共轴刚性旋翼悬停状态气动干扰机理[J]. 南京航空航天大学学报, 2019, 51(2):201-207 LU Congling, SHI Yongjie, XU Guohua, et al. Research on aerodynamic interaction mechanism of rigid coaxial rotor in hover[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2):201-207 (in Chinese)
[3] 张震宇, 钱耀如, 王同光,等. 基于非定常方程的刚性旋翼流场分析[J]. 南京航空航天大学学报, 2019, 51(2):238-244 ZHANG Zhenyu, QIAN Yaoru, WANG Tongguang, et al. Analysis on flow-field around helicopter rigid rotor blades based on unsteady RANS equations[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2):238-243 (in Chinese)
[4] HARIHARAN N S, EGOLF T A, SANKAR L N. Simulation of rotor in hover:current state, challenges and standardized evaluation[C]//52nd AIAA Aerospace Sciences Meeting, 2014
[5] HARIHARAN N S, NARDUCCI R P, REED E, et al. AIAA standardized hover simulation:hover performance prediction status and outstanding issues[C]//55th AIAA Aerospace Sciences Meeting, 2017
[6] PARWANI A, CODER J G. Effect of laminar-turbulent transition modeling on PSP rotor hover predictions[C]//56th AIAA Aerospace Sciences Meeting, 2018
[7] SINGH R, CORLE E, JAIN R, et al. Computation and quantification of uncertainty in predictions of HVAB rotor performance in hover[C]//AIAA Scitech 2019 Forum, 2019
[8] JAIN R. Sensitivity study of high-fidelity hover predictions on the sikorsky S-76 rotor[J]. Journal of Aircraft, 2017, 55(1):1-11
[9] JAIN R. A comparison of CFD hover predictions for the sikorsky S-76 rotor[C]//54th AIAA Aerospace Sciences Meeting, 2016
[10] WEISS A, GARDNER A D, SCHWERMER T, et al. On the effect of rotational forces on rotor blade boundary-layer transition[J]. AIAA Journal, 2019, 57(1):252-266
[11] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:a path to revolutionary computational aerosciences[R]. NASA/CR-2014-218178
[12] 杜一鸣. 涡黏性湍流模型修正与三维边界层转捩预测方法研究[D]. 西安:西北工业大学, 2021 DU Yiming. Research on modification of RANS eddy-viscosity turbulence model and prediction method of three-dimensional boundary-layer transition[D]. Xi'an:Northwestern Polytechnical University, 2021 (in Chinese)
[13] PANG Chao, GAO Zhenghong, YANG Hua, et al. An efficient grid assembling method in unsteady dynamic motion simulation using overset grid[J]. Aerospace Science and Technology, 2020(110):106450
[14] PANG Chao, GAO Zhenghong. CFD simulation of unsteady interaction between rotor and fuselage for canard rotor wing in hovering using overset grids[C]//9th Asia Conference on Mechanical and Aerospace Engineering, 2018
[15] PANG Chao, GAO Zhenghong. Numerical investigation of aerodynamic performance for a canard rotor wing aircraft in late conversion mode[C]//Asia Pacific International Symposium on Aerospace Technology, Engineers, Australia, 2019
[16] PANG Chao, YANG Hua, GAO Zhenghong, et al. Enhanced adaptive mesh refinement method using advanced vortex identification sensors in wake flow[J]. Aerospace Science and Technology, 2021(115):106796
[17] 杜一鸣, 庞超, 舒博文,等. 基于嵌套网格的CHN-T1标模数值模拟[J]. 空气动力学学报, 2019, 37(2):280-290 DU Yiming, PANG Chao, SHU Bowen, et al. Numerical simulation of the standard model CHN-T1 based on overset grid[J]. Acta Aerodynamica Sinica, 2019, 37(2):280-290 (in Chinese)
[18] MEDIDA S, BAEDER J. Application of the correlation-based γ-Reθt transition model to the spalart-allmaras turbulence model[C]//20th AIAA Computational Fluid Dynamics Conference, 2011
[19] SHIVAJI M. Correlation-based transition modeling for external aerodynamic flows[D]. Maryland:University of Maryland College Park, 2014
[20] SCHUBAUER G B, KLEBANOFF P S. Contributions on the mechanics of boundary-layer transition[R]. NACA-TR-1289, 1955
[21] SAVILL A M. Some recent progress in the turbulence modelling of bypass transition//Near-Wall Turbulent Flows[M]. Netherlands:Elsevier, 1993, 829-848
[22] SAVILL A M. Evaluating turbulence model predictions of transition//Advances in Turbulence IV[M]. Dordrecht:Springer, 1993:555-562
[23] SOMERS D M. Design and experimental results for the S809 airfoil[R]. NREL/SR-440-6918, 1997
[24] OVERMEYER A D, MARTIN P B. Measured boundary layer transition and rotor hover performance at model scale[C]//55th AIAA Aerospace Sciences Meeting, 2017