论文:2022,Vol:40,Issue(2):229-242
引用本文:
申仲琳, 刘园, 苏海军, 赵迪, 刘海方. 超高温氧化物共晶陶瓷高梯度定向凝固组织与性能调控研究进展[J]. 西北工业大学学报
SHEN Zhonglin, LIU Yuan, SU Haijun, ZHAO Di, LIU Haifang. Research progress on microstructure and property regulation of ultra-high temperature oxide eutectic ceramics by high gradient directional solidification technology[J]. Northwestern polytechnical university

超高温氧化物共晶陶瓷高梯度定向凝固组织与性能调控研究进展
申仲琳1, 刘园1, 苏海军1,2, 赵迪1, 刘海方1
1. 西北工业大学 凝固技术国家重点实验室, 陕西 西安 710072;
2. 西北工业大学深圳研究院, 深圳 518057
摘要:
随着航空航天等高新技术领域的迅猛发展,新一代高性能、高效率的超高温结构材料及其制备技术日益成为世界各国航空航天战略发展的重点。超高温氧化铝基共晶陶瓷具有天然杰出的抗氧化、抗腐蚀、抗蠕变、高强度等优良特性,在1400 ℃以上高温、水氧腐蚀等极端环境下服役具有突出的优势和巨大的发展前景。概述了超高温氧化物共晶陶瓷高梯度定向凝固技术的发展现状;探讨了氧化铝基超高温陶瓷高梯度定向凝固过程中缺陷的形成机理及其抑制措施;重点总结和评述了定向凝固氧化铝基共晶陶瓷的组织特征及均细化调控方法、共晶陶瓷晶体取向及织构调控方法,以及氧化物共晶陶瓷力学性能和强韧化调控方法;展望了高梯度定向凝固技术制备高性能大尺寸氧化物共晶陶瓷的发展趋势和突破点。
关键词:    超高温氧化物共晶陶瓷    高梯度定向凝固    凝固组织    性能调控   
Research progress on microstructure and property regulation of ultra-high temperature oxide eutectic ceramics by high gradient directional solidification technology
SHEN Zhonglin1, LIU Yuan1, SU Haijun1,2, ZHAO Di1, LIU Haifang1
1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China;
2. Research & Development Institute of Northwestern Polytechnical University, Shenzhen 518057, China
Abstract:
With the rapid development of aerospace and other high-tech fields, a new generation of high perfor-mance, high efficiency ultrahigh temperature structural materials and their preparation technologies increasingly becomes the focus of the development of aerospace strategy in the world. Ultrahigh temperature alumina based eutectic ceramics have excellent intrinsic oxidation resistance, corrosion resistance, creep resistance, high strength and other excellent properties. Therefore, they have outstanding advantages and great development prospect in extreme environment such as ultrahigh temperature above 1 400℃, water and oxygen corrosion circumstances. In this paper, the current development status has been firstly introduced for the ultrahigh temperature oxide eutectic ceramics prepared by high gradient directional solidification technologies. Then, the formation mechanism and control method of the defects during the high gradient directional solidification process of the alumina based ultrahigh temperature eutectic ceramics have been summarized. Furthermore, the microstructure characteristics and homogenization control methods, crystal orientation and texture control methods, mechanical properties and strengthening-toughening control methods of oxide eutectic ceramics have been reviewed. Finally, the development trend and breakthrough point have been comprehensively prospected for the preparation of oxide eutectic ceramics with high performance and large size by high gradient directional solidification technologies.
Key words:    ultra-high temperature oxide eutectic ceramics    high gradient directional solidification    solidified microstructure    performance control   
收稿日期: 2022-01-23     修回日期:
DOI: 10.1051/jnwpu/20224020229
基金项目: 国家自然科学基金(52130204,52174376)、广东省基础与应用基础研究基金(2021B1515120028)、陕西省科技创新团队计划(2021TD-17)、陕西省科技厅与西北工业大学联合研究基金(2020GXLH-Z-024)、中央高校基础研究基金(D5000210902)、凝固技术国家重点实验室研究基金(2019-QZ-02)与西北工业大学博士论文创新基金(CX2021056,CX2021066)资助
通讯作者: 苏海军(1981-),西北工业大学教授,主要从事先进凝固技术与理论及新材料研究。e-mail:shjnpu@nwpu.edu.cn     Email:shjnpu@nwpu.edu.cn
作者简介: 申仲琳(1989-),女,西北工业大学博士研究生,主要从事氧化铝基共晶陶瓷激光3D打印研究。
相关功能
PDF(7636KB) Free
打印本文
把本文推荐给朋友
作者相关文章
申仲琳  在本刊中的所有文章
刘园  在本刊中的所有文章
苏海军  在本刊中的所有文章
赵迪  在本刊中的所有文章
刘海方  在本刊中的所有文章

参考文献:
[1] HIRANO K. Application of eutectic composites to gas turbine system and fundamental fracture properties up to 1 700℃[J]. Journal of the European Ceramic Society, 2005, 25(8):1191-1199
[2] NAKAGAWA N, OHTSUBO H, MITANI A, et al. High temperature strength and thermal stability for melt growth composite[J]. Journal of the European Ceramic Society, 2005, 25:1251-1257
[3] REN Q, SU H, ZHANG J, et al. Rapid eutectic growth of Al2O3/Er3Al5O12 nanocomposite prepared by a new method:melt falling-drop quenching[J]. Scripta Materialia, 2016, 125:39-43
[4] SU H, ZHANG J, YU J, et al. Directional solidification and microstructural development of Al2O3/GdAlO3 eutectic ceramic in situ composite under rapid growth conditions[J]. Journal of Alloys and Compounds, 2011, 509(12):4420-4425
[5] WAKU Y, NAKAGAWA N, KOBAYASHI K, et al. Innovative manufacturing process of MGC components for ultra-high efficiency gas turbine systems[C]//Proceedings of ASME Turbo Expo 2004:Power for Land, Sea, and Air, Vienna, Austria, 2004
[6] WAKU Y, NAKAGAWA N, WAKAMOTO T, et al. A ductile ceramic eutectic composite with high strength at 1 873 K[J]. Nature, 1997, 389:49-52
[7] LEE J H, YOSHIKAWA A, DURBIN S D, et al. Microstructure of Al2O3/ZrO2 eutectic fibers grown by the micro-pulling down method[J]. Journal of Crystal Growth, 2001, 222:791-796
[8] BENAMARA O, CHERIF M, DUFFAR T, et al. Microstructure and crystallography of Al2O3-Y3Al5O12-ZrO2 ternary eutectic oxide grown by the micropulling down technique[J]. Journal of Crystal Growth, 2015, 429:27-34
[9] LEE J H, YOSHIKAWA A, FUKUDA T, et al. Growth and characterization of Al2O3/Y3Al5O12/ZrO2 ternary eutectic fibers[J]. Journal of Crystal Growth, 2001, 231:115-120
[10] ANDREETA E R M, ANDREETA M R B, HERNANDES A C. Laser heated pedestal growth of Al2O3/GdAlO3 eutectic fibers[J]. Journal of Crystal Growth, 2002, 234:782-785
[11] LAIDOUNE A, LEBBOU K, BAHLOUL D. Microstructure of the yttria doped Al2O3-ZrO2 eutectic fibers grown by the laser heated pedestal growth(LHPG) method[J]. Journal of Crystal Growth, 2013, 380:224-227
[12] SU H, REN Q, ZHANG J, et al. Microstructures and mechanical properties of directionally solidified Al2O3/GdAlO3 eutectic ceramic by laser floating zone melting with high temperature gradient[J]. Journal of the European Ceramic Society, 2017, 37:1617-1626
[13] FAN G, SU H, ZHANG J, et al. Microstructure and cytotoxicity of Al2O3-ZrO2 eutectic bioceramics with high mechanical properties prepared by laser floating zone melting[J]. Ceramics International, 2018, 44(15):17978-17985
[14] SU H, WANG E, REN Q, et al. Microstructure tailoring and thermal stability of directionally solidified Al2O3/GdAlO3 binary eutectic ceramics by laser floating zone melting[J]. Ceramics International, 2018, 44(7):7908-7916
[15] SU H, ZHANG J, CUI C, et al. Rapid solidification of Al2O3/Y3Al5O12/ZrO2 eutectic in situ composites by laser zone remelting[J]. Journal of Crystal Growth, 2007, 307:448-456
[16] FAN Z, ZHAO Y, TAN Q, et al. Nanostructured Al2O3-YAG-ZrO2 ternary eutectic components prepared by laser engineered net shaping[J]. Acta Materialia, 2019, 170:24-37
[17] LIU H, SU H, SHEN Z, et al. One-step additive manufacturing and microstructure evolution of melt-grown Al2O3/GdAlO3/ZrO2 eutectic ceramics by laser directed energy deposition[J]. Journal of the European Ceramic Society, 2021, 41:3547-3558
[18] LIU H, SU H, SHEN Z, et al. Preparation of large-size Al2O3/GdAlO3/ZrO2 ternary eutectic ceramic rod by laser directed energy deposition and its microstructure homogenization mechanism[J]. Journal of Material Science & Technology, 2021, 85:218-223
[19] LIU H, SU H, SHEN Z, et al. Direct formation of Al2O3/GdAlO3/ZrO2 ternary eutectic ceramics by selective laser melting:microstructure evolutions[J]. Journal of the European Ceramic Society, 2018, 38:5144-5152
[20] NIU F, WU D, MA G, et al. Nanosized microstructure of Al2O3-ZrO2(Y2O3) eutectics fabricated by laser engineered net shaping[J]. Scripta Materialia, 2015, 95:39-41
[21] WAKU Y, NAKAGAWA N, WAKAMOTO T, et al. High-temperature strength and thermal stability of a unidirectionally solidified Al2O3/YAG eutectic composite[J]. Journal of Materials Science, 1998, 33:1217-1225
[22] LIU H, SU H, SHEN Z, et al. Insights into high thermal stability of laser additively manufactured Al2O3/GdAlO3/ZrO2 eutectic ceramics under high temperatures[J]. Additive Manufacturing, 2021, 48:102425
[23] LLORCA J, ORERA V M. Directionally solidified eutectic ceramic oxides[J]. Progress in Materials Science, 2006, 51:711-809
[24] PARADIS P F, ISHIKAWA T. Surface tension and viscosity measurements of liquid and undercooled alumina by containerless techniques[J]. Japanese Journal of Applied Physics, 2005, 44:5082-5085
[25] ZHOU X, LIU X, ZHANG D, et al. Balling phenomena in selective laser melted tungsten[J]. Journal of Materials Processing Technology, 2015, 222:33-42
[26] SU H, LIU Y, REN Q, et al. Distribution control and formation mechanism of gas inclusions in directionally solidified Al2O3-Er3Al5O12-ZrO2 ternary eutectic ceramic by laser floating zone melting[J]. Journal of Material Science & Technology, 2021, 66:21-27
[27] 申仲琳, 苏海军, 刘海方, 等. 超高温氧化物陶瓷激光增材制造技术与缺陷控制研究进展[J]. 复合材料学报, 2021, 38:668-679 SHEN Zhonglin, SU Haijun, LIU Haifang, et al. Research progress on laser additive manufacturing technology and its defect control for ultra-high temperature oxide ceramics[J]. Acta Materiae Compositae Sinica, 2021, 38:668-679 (in Chinese)
[28] YAN S, HUANG Y, ZHAO D, et al. 3D printing of nano-scale Al2O3-ZrO2 eutectic ceramic:principle analysis and process optimization of pores[J]. Additive Manufacturing, 2019, 28:120-126
[29] SU H, ZHANG J, LIU L, et al. Rapid growth and formation mechanism of ultrafine structural oxide eutectic ceramics by laser direct forming[J]. Applied Physics Letters, 2011, 99:221913
[30] LI F, LIU Z, LI B, et al. Pore formation model for direct laser deposition of Al2O3-ZrO2 ceramic[J]. Journal of the European Ceramic Society, 2022, 42:207-215
[31] LIU H, SU H, SHEN Z, et al. Effect of scanning speed on the solidification process of Al2O3/GdAlO3/ZrO2 eutectic ceramics in a single track by selective laser melting[J]. Ceramics International, 2019, 45:17252-17257
[32] WU D, LU F, ZHAO D, et al. Effect of doping SiC particles on cracks and pores of Al2O3-ZrO2 eutectic ceramics fabricated by directed laser deposition[J]. Journal of Materials Science, 2019, 54:9321-9330
[33] FERRAGE L, BERTRAND G, LENORMAND P. Dense yttria-stabilized zirconia obtained by direct selective laser sintering[J]. Additive Manufacturing, 2018, 21:472-478
[34] ZHANG K, LIU T, LIAO W, et al. Influence of laser parameters on the surface morphology of slurry-based Al2O3 parts produced through selective laser melting[J]. Rapid Prototyping Journal, 2018, 24:333-341
[35] NIU F, WU D, YAN S, et al. Process optimization for suppressing cracks in laser engineered net shaping of Al2O3 ceramics[J]. The Journal of the Minerals, Metals & Materials Society, 2017, 69:557-562
[36] LIU Q, SONG B, LIAO H. Microstructure study on selective laser melting yttria stabilized zirconia ceramic with near IR fiber laser[J]. Rapid Prototyping Journal, 2014, 20:346-354
[37] HU Y, NING F, CONG W, et al. Ultrasonic vibration-assisted laser engineering net shaping of ZrO2-Al2O3 bulk parts:effects on crack suppression, microstructure, and mechanical properties[J]. Ceramics International, 2018, 44:2752-2760
[38] 刘翰超, 卢凡, 马广义, 等. 恒温基底对Al2O3基共晶陶瓷组织及硬度的影响[J]. 光电工程, 2017, 44:1194-1199 LIU Hanchao, LU Fan, MA Guangyi, et al. Effect of constant temperature substrate on microstructure and hardness of Al2O3-based eutectic ceramics[J]. Opto-Electronic Engineering, 2017, 44:1194-1199 (in Chinese)
[39] MA W, ZHANG J, SU H, et al. Theoretical prediction and experimental comparison for eutectic growth of Al2O3/GdAlO3 faceted eutectics[J]. Journal of the European Ceramic Society, 2019, 39:3837-3842
[40] SU H, SHEN Z, REN Q, et al. Evolutions of rod diameter, molten zone and temperature gradient of oxide eutectic ceramics during laser floating zone melting[J]. Ceramics International, 2020, 46:18750-18757
[41] MA W, ZHANG J, SU H, et al. Microstructure transformation from irregular eutectic to complex regular eutectic in directionally solidified Al2O3/GdAlO3/ZrO2 ceramics by laser floating zone melting[J]. Journal of the European Ceramic Society, 2016, 36:1447-1454
[42] MA W, ZHANG J, SU H, et al. Phase growth patterns for Al2O3/GdAlO3 eutectics over wide ranges of compositions and solidification rates[J]. Journal of Materials Science & Technology, 2021, 65:89-98
[43] MA W, SU H, ZHANG J, et al. Effects of composition and solidification rate on growth striations in laser floating zone melted Al2O3/GdAlO3 eutectic ceramics[J]. Journal of the American Ceramic Society, 2018, 101:3337-3346
[44] YAN S, WU D, MA G, et al. Formation mechanism and process optimization of nano Al2O3-ZrO2 eutectic ceramic via laser engineered net shaping (LENS)[J]. Ceramics International, 2017, 43:14742-14747
[45] REN Q, SU H, ZHANG J, et al. Microstructure control, competitive growth and precipitation rule in faceted Al2O3/Er3Al5O12 eutectic in situ composite ceramics prepared by laser floating zone melting[J]. Journal of the European Ceramic Society, 2019, 39:1900-1908
[46] REN Q, SU H, ZHANG J, et al. Eutectic growth behavior with regular arrangement in the faceted Al2O3/Er3Al5O12 irregular eutectic system at low growth rate[J]. Scripta Materialia, 2019, 162:49-53
[47] 吴东江, 孙贝, 牛方勇, 等. 激光近净成形不同颜色Al2O3陶瓷件微观组织及裂纹分析[J]. 硅酸盐学报, 2013, 41:1621-1626 WU Dongjiang, SUN Bei, NIU Fangyong, et al. Microstructure and crack in color Al2O3 samples by laser engineered net shaping[J]. Journal of the Chinese Ceramic Society, 2013, 41:1621-1626 (in Chinese)
[48] WU D, LIU H, LU F, et al. Al2O3-YAG eutectic ceramic prepared by laser additive manufacturing with water-cooled substrate[J]. Ceramics International, 2019, 45:4119-4122
[49] YAN S, WU D, NIU F, et al. Effect of ultrasonic power on forming quality of nano-sized Al2O3-ZrO2 eutectic ceramic via laser engineered net shaping (LENS)[J]. Ceramics International, 2018, 44:1120-1126
[50] YAN S, WU D, NIU F, et al. Al2O3-ZrO2 eutectic ceramic via ultrasonic-assisted laser engineered net shaping[J]. Ceramics International, 2017, 43:15905-15910
[51] WANG X, WANG J Y, SUN L C, et al. Microstructure evolution of Al2O3/Y3Al5O12 eutectic crystal during directional solidification[J]. Scripta Materialia, 2015, 108:31-34
[52] MA X, LI J, PENG Z, et al. Interpenetrating network-structured Al2O3-Y3Al5O12 eutectic composite grown by containerlessly directional solidification process[J]. Crystal Growth & Design, 2015, 15:5652-5655
[53] SAKATA S, MITANI A, SHIMIZU K, et al. Crystallographic orientation analysis and high temperature strength of melt growth compo-site[J]. Journal of the European Ceramic Society, 2005, 25:1441-1445
[54] FAN Z, ZHAO Y, TAN Q, et al. New insights into the growth mechanism of 3D-printed Al2O3-Y3Al5O12 binary eutectic composites[J]. Scripta Materialia, 2020, 178:274-280
[55] LARREA A, FUENTE G F, MERINO R I, et al. ZrO2-Al2O3 eutectic plates produced by laser zone melting[J]. Journal of the European Ceramic Society, 2002, 22:191-198
[56] OHASHI Y, YASUI N, SUZUKI T, et al. Orientation relationships of unidirectionally aligned GdAlO3/Al2O3 eutectic fibers[J]. Journal of the European Ceramic Society, 2014, 34:3849-3857
[57] MAZEROLLES L, PERRIERE L, LARTIGUE KORINEK S, et al. Microstructures, crystallography of interfaces, and creep behavior of melt-growth composites[J]. Journal of the European Ceramic Society, 2008, 28:2301-2308
[58] MESA M C, SERRANO-ZABALETA S, OLIETE P B, et al. Microstructural stability and orientation relationships of directionally solidified Al2O3-Er3Al5O12-ZrO2 eutectic ceramics up to 1600℃[J]. Journal of the European Ceramic Society, 2014, 34:2071-2080
[59] WANG X, ZHONG Y, SUN Q, et al. Crystallography and interfacial structure in a directionally solidified Al2O3/Y3Al5O12/ZrO2 eutectic crystal[J]. Scripta Materialia, 2018, 145:23-27
[60] WANG X, WANG D, ZHANG H, et al. Mechanism of eutectic growth in directional solidification of an Al2O3/Y3Al5O12 crystal[J]. Scripta Materialia, 2016, 116:44-48
[61] MURAYAMA Y, HANADA S, LEE J H, et al. High-temperature strength of directionally solidified Al2O3/YAG/ZrO2 eutectic composite[C]//Materials Science Forum, Switzerland, 2005
[62] YOSHIMURA M, SAKATA S, YAMADA S, et al. The growth of Al2O3/YAG:Ce melt growth composite by the vertical bridgman technique using an a-axis Al2O3 seed[J]. Journal of Crystal Growth, 2015, 427:16-20
[63] WANG X, ZHONG Y, WANG D, et al. Effect of interfacial energy on microstructure of a directionally solidified Al2O3/YAG eutectic ceramic[J]. Journal of the American Ceramic Society, 2018, 101:1029-1035
[64] WAKU Y, SAKATA S, MITANI A, et al. Temperature dependence of flexural strength and microstructure of Al2O3/Y3Al5O12/ZrO2 ternary melt growth composites[J]. Journal of Materials Science, 2002, 37:2975-2982
[65] MURAYAMA Y, HANADA S, LEE J H, et al. Microstructure and high-temperature strength of directionally solidified Al2O3/YAG/ZrO2 eutectic composite[J]. Materials Transactions, 2004, 45:303-306
[66] LEE J H, YOSHIKAWA A, MURAYAMA Y, et al. Microstructure and mechanical properties of Al2O3/Y3Al5O12/ZrO2 ternary eutectic materials[J]. Journal of the European Ceramic Society, 2005, 25:1411-1417
[67] PASTOR J Y, LLORCA J, SALAZAR A, et al. Mechanical properties of melt-grown alumina-yttrium aluminum garnet eutectics up to 1 900 K[J]. Journal of the American Ceramic Society, 2005, 88:1488-1495
[68] OLIETE P B, PENA J I, LARREA A, et al. Ultra-high-strength nanofibrillar Al2O3-YAG-YSZ eutectics[J]. Advanced Materials, 2007, 19:2313-2318
[69] PARK D Y, YANG J M. Effect of the microstructure on the mechanical properties of a directionally solidified Y3Al5O12/Al2O3 eutectic fiber[J]. Journal of Materials Science, 2001, 36:5593-5601
[70] COURTRIGHT E L, LABORATORY P N, HAGGERTY J S, et al. Controlling microstructure in ZrO2/(Y2O3)-Al2O3 eutectic fibers[J]. Ceramic Engineering and Science Proceedings, 1993, 14:671-681
[71] WAKU Y. A new ceramic eutectic composite with high strength at 1 873 K[J]. Advanced Materials, 1998, 10(8):615-617
[72] SU H, ZHANG J, MA W, et al. In situ fabrication of highly-dense Al2O3/YAG nanoeutectic composite ceramics by a modified laser surface processing[J]. Journal of the European Ceramic Society, 2014, 34:739-744
[73] ZHANG J, SU H, SONG K, et al. Microstructure, growth mechanism and mechanical property of Al2O3-based eutectic ceramic in situ composites[J]. Journal of the European Ceramic Society, 2011, 31:1191-1198
[74] SU H, ZHANG J, CUI C, et al. Rapid solidification behaviour of Al2O3/Y3Al5O12(YAG) binary eutectic ceramic in situ composites[J]. Materials Science and Engineering A, 2008, 479:380-388
[75] NIE Y, ZHANG M, LIU Y, et al. Microstructure and mechanical properties of Al2O3/YAG eutectic ceramic grown by horizontal directional solidification method[J]. Journal of Alloys and Compounds, 2016, 657:184-191
[76] YAN S, WU D, HUANG Y, et al. C fiber toughening Al2O3-ZrO2 eutectic via ultrasonic-assisted directed laser deposition[J]. Materials Letters, 2019, 235:228-231
[77] MAZEROLLES L, PIQUET N, TRICHET M F, et al. New microstructures in ceramic materials from the melt for high temperature applications[J]. Aerospace Science and Technology, 2008, 12:499-505
[78] LARREA A, ORERA V M, MERINO R I, et al. Microstructure and mechanical properties of Al2O3-YSZ and Al2O3-YAG directionally solidified eutectic plates[J]. Journal of the European Ceramic Society, 2005, 25:1419-1429
[79] LIU Z, SONG K, GAO B, et al. Microstructure and mechanical properties of Al2O3/ZrO2 directionally solidified eutectic ceramic prepared by laser 3D printing[J]. Journal of Materials Science & Technology, 2016, 32:320-325