论文:2022,Vol:40,Issue(1):158-166
引用本文:
何青松, 王广兴, 王奇, 张 章, 王立武, 贾贺. 空气物性对充气式返回舱流场特性的影响[J]. 西北工业大学学报
HE Qingsong, WANG Guangxing, WANG Qi, ZHANG Zhang, WANG Liwu, JIA He. Effects of air properties on flow filed characteristics of inflatable reentry decelerator[J]. Northwestern polytechnical university

空气物性对充气式返回舱流场特性的影响
何青松1,2, 王广兴1,2, 王奇1,2, 张 章1,2, 王立武1,2, 贾贺1,2
1. 北京空间机电研究所, 北京 100094;
2. 中国航天科技集团有限公司 航天进入、减速与着陆技术实验室, 北京 100094
摘要:
空气物性参数对于飞行器再入流场特性的预测十分重要,目前对充气式返回舱流场特性的预测常采用Sutherland公式,而充气式返回舱高速再入流场温度较高,Sutherland公式并不适用。为研究空气物性对充气式返回舱流场特性的影响,为充气式返回舱的工程设计提供一定理论参考,分别采用Gupta拟合的高温空气物性参数以及Sutherland公式对充气式返回舱的流场特性进行了数值模拟研究,比较了两者计算结果的差异。结果表明,采用Gupta拟合公式获得的流场温度低于Sutherland的计算结果,且这种差异在高来流马赫数和温度的工况更加明显。对返回舱迎风面的热流密度和压强的研究发现,Sutherland公式低估了迎风面的热流密度和压强,其中热流密度的低估程度比压强的低估程度更大,工况5中Gupta拟合公式获得的热流密度峰值高出Sutherland公式获得的热流密度峰值29%。
关键词:    空气物性    Gupta拟合公式    Sutherland公式    充气式返回舱    数值模拟   
Effects of air properties on flow filed characteristics of inflatable reentry decelerator
HE Qingsong1,2, WANG Guangxing1,2, WANG Qi1,2, ZHANG Zhang1,2, WANG Liwu1,2, JIA He1,2
1. Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China;
2. Laboratory of Aerospace Entry, Descent and Landing Technology, CASC, Beijing 100094, China
Abstract:
Air properties are very important for predicting the flow filed characteristics of aircraft. At present, Sutherland formula is always used to predict the flow filed characteristics of inflatable reentry decelerator. However, high temperature can be observed in high speed reentry flow around inflatable reentry decelerator, thus the Sutherland formula is not suitable for reentry flow simulation of inflatable reentry decelerator. In order to investigate the effect of the air properties on the flow filed characteristics of inflatable reentry decelerator, and provides the theoretical references for the inflatable reentry decelerator design, the Gupta fitting formula and Sutherland formula are used to describe the air properties, respectively, for studying the flow filed characteristics of inflatable reentry decelerator. The results show that the reentry flow temperature with Gupta fitting formula used is lower than that with Sutherland formula used, and the temperature difference is more obvious in the high inflow Mach number and temperature cases. The results in the windward of inflatable reentry decelerator show that the Sutherland formula underestimates the heat flux and pressure, and the heat flux difference is much more obvious. Such as case 5, the peak heat flux obtained by Gupta fitting formula is by 29% higher than that obtained by Sutherland formula.
Key words:    air transport properties    Gupta fitting formula    Sutherland formula    inflatable reentry decelerator    simulation   
收稿日期: 2021-05-27     修回日期:
DOI: 10.1051/jnwpu/20224010158
基金项目: 国家自然科学基金(12005014)资助
通讯作者:     Email:
作者简介: 何青松(1990—),北京空间机电研究所工程师、博士,主要从事航天器进入减速着陆技术研究。e-mail:906021880@qq.com
相关功能
PDF(3502KB) Free
打印本文
把本文推荐给朋友
作者相关文章
何青松  在本刊中的所有文章
王广兴  在本刊中的所有文章
王奇  在本刊中的所有文章
张 章  在本刊中的所有文章
王立武  在本刊中的所有文章
贾贺  在本刊中的所有文章

参考文献:
[1] 卫剑征, 谭惠丰, 王伟志, 等. 充气式再入减速器研究最新进展[J]. 宇航学报, 2013, 34(7):881-890 WEI Jianzheng, TAN Huifeng, WANG Weizhi, et al. New trends in inflatable reentry aeroshell[J]. Journal of Astronautics, 2013, 34(7):881-890(in Chinese)]
[2] CLARK I G, HUTCHINGS A L, TANNER C L, et al. Supersonic inflatable aerodynamic decelerators for use on future robotic missions to mars[J]. Journal of Spacecraft and Rockets, 2009, 46(2):340-352
[3] MUPPIDI S, TANG C Y, NORMAN J V, et al. Aerodynamic analysis of next generation supersonic decelerators[C]//32nd AIAA Applied Aerodynamics Conference, Atlandta, USA, 2014
[4] WACHI A, TAKAHASHI R, SAKAGAMI R, et al. Mars entry, descent, and landing by small THz spacecraft via membrane aeroshell[C]//AIAA SPACE and Astronautics Forum and Exposition, Orlando, USA, 2017
[5] REYNIER P, EVANS D. Post-flight analysis of IRDT blackout during earth reentry[C]//39th Plasmadynamics and Lasers Conference,Seattle, USA, 2008
[6] YAMADA K, NAGATA Y, ABE T, et al. Suborbital reentry demonstration of inflatable flare-type thin-membrane aeroshell using a sounding rocket[J]. Journal of Spacecraft and Rockets, 2015, 52(1):275-284
[7] GILBERT C, MAZOUE F, ORTEGA G, et al. New space application opportunities based on the inflatable reentry & descent technology[C]//AIAA/ICAS International Air and Space Symposium and Exposition:the Next 100 Years, Dayion, USA, 2003
[8] 吴杰, 张章, 候安平, 等. 充气式再入减速器动态气动载荷与结构特性研究[J]. 宇航学报, 2020, 41(3):287-297 WU Jie, ZHANG Zhang, HOU Anping, et al. Dynamic aerodynamic load and structural characteristics of inflatable reentry reducer[J]. Journal of Astronautics, 2020,41(3):287-297(in Chinese)
[9] 王帅, 余莉, 张章, 等. 气动热作用下的充气式减速器性能研究[J]. 航天返回与遥感, 2019, 40(2):33-42 WANG Shuai, YU Li, ZHANG Zhang, et al. Study on the performance of inflatable decelerator with aerodynamic heating[J]. Spacecraft Recovery & Remote Sensing, 2019, 40(2):33-42(in Chinese)
[10] 赵晓舜, 余莉, 杨雪. 不同迎角和速度下充气式返回舱气动性能预测[J]. 航天返回与遥感, 2016, 37(5):27-36 ZHAO Xiaoshun, YU Li, YANG Xue. The prediction of aerodynamic performance of inflatable reentry vehicle at various speeds and attack angles[J]. Spacecraft Recovery & Remote Sensing, 2016, 37(5):27-36(in Chinese)
[11] GUO J H, LIN G P, BU X Q, et al. Effect of static shape deformation on aerodynamics and aerothermodynamics of hypersonic inflatable aerodynamic decelerator[J]. Acta Astronautica, 2017, 136:421-433
[12] TAKAHASHI Y, HA D, OSHIMA N, et al. Aerodecelerator performance of flare-type membrane inflatable vehicle in suborbital reentry[J]. Journal of Spacecraft and Rockets, 2017, 54(5):993-1004
[13] MURMAN S M. Dynamic simulations of inflatable aerodynamic decelerator concepts[C]//20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, Seattle, USA, 2009
[14] 万兵兵, 韩宇峰, 樊宇, 等. 高温空气传输特性对边界层稳定性及转捩预测的影响[J]. 航空动力学报, 2017, 32(1):188-195 WANG Bingbing, HAN Yufeng, FAN Yu, et al. Effect of transport properties of high temperature air on boundary layer stability and transition prediction[J]. Journal of Aerospace Power, 2017, 32(1):188-195(in Chinese)
[15] TAKAHASHI Y, YAMADA K. Aerodynamic heating of inflatable aeroshell in orbital reentry[J]. Acta Astronautica, 2018, 152(1):437-448
[16] ESCH D D,PIKE R W,ENGEL C D,et al.Stagnation region heating of a phenolic_nylon ablator during return from planetary missions[R]. NASA CR-112026, 1971
[17] BLOTTNER F G, JOHNSON M, ELLIS M. Chemically reaction viscous flow program for multicomponent gas mixture[R]. RR 70-754, 1972
[18] WILKE C R. A viscosity equation for gas mixturesf[J]. Journal of Chemical Physics, 1950, 18(4):517-519
[19] GUPTA R N, LEE K P, THOMPSON R A, et al. Calculations and curve fits of thermodynamic and transport properties for equilibrium air to 30000 K[R]. NASA RP-1260, 1991
[20] PUGAZENTHI R S, KRISHNAN U. Design and performance analysis of a supersonic diffuser for plasma wind tunnel[C]//46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, USA, 2008
[21] KIM K H, RHO O H, PARK C. Navier-Stokes computation of flows in arc heaters[J]. Journal of Thermophysics and Heat Transfer, 2012, 14(2):250-258
[22] KIM K H, KIM C, RHO O H. Methods for the accurate computations of hypersonic flows:shock-aligned grid technique[J]. Journal of Computational Physics, 2001, 174(1):81-119
[23] MANABU M, TAKAHASHI Y, OBUYUKI O, et al. Aerodynamic heating prediction of an inflatable reentry vehicle in a hypersonic wind tunnel[C]//55th AIAA Aerospace Sciences Meeting, Grapevine, USA, 2017
[24] HANNEMANN K, SCHRAMM J M, Karl S, et al. Cylinder shock layer density profiles measured in high enthalpy flows in HEG[R]. AIAA-2002-2913
[25] 廖东骏, 柳森, 简和祥, 等. 高超声速球头激波脱体距离研究综述[J]. 实验流体力学, 2015, 29(6):1-7 LIAO Dongjun, LIU Sen, JIAN Hexiang, et al. Review of research on shock standoff distance for hypersonic sphere[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(6):1-7(in Chinese)
[26] INOUYE M. Shock standoff distance for equilibrium flow around hemispheres obtained from numerical calculations[J]. AIAA Journal, 1965, 3(1):172-173
[27] 曹旭, 黄明星, 丁弘, 等. 充气式再入与减速系统柔性热防护材料的热冲击试验[J]. 载人航天, 2018, 24(1):26-33 CAO Xu, HUANG Mingxing, DING Hong, et al. Thermal shock test of flexible thermal protection system for inflatable reentry and descent technology[J]. Manned Spaceflight, 2018, 24(1):26-33(in Chinese)