论文:2022,Vol:40,Issue(1):110-117
引用本文:
曾小杰, 王良模, 陈刚, 王陶, 王伟利, 李晓. 某车载方舱轻质复合保温结构性能优化设计[J]. 西北工业大学学报
ZENG Xiaojie, WANG Liangmo, CHEN Gang, WANG Tao, WANG Weili, LI Xiao. Performance optimization design of lightweight composite thermal insulation structure for vehicle shelter[J]. Northwestern polytechnical university

某车载方舱轻质复合保温结构性能优化设计
曾小杰1, 王良模1, 陈刚1, 王陶1, 王伟利2, 李晓2
1. 南京理工大学 机械工程学院, 江苏 南京 210094;
2. 苏州江南航天机电有限公司, 江苏 南京 215300
摘要:
针对高热高寒等环境下车载方舱的保温隔热问题,以导热系数低的真空隔热板和气凝胶为芯材、聚氨酯泡沫为基材,提出了一种适用于车载方舱的新型双芯包覆式保温结构。基于ANSYS二次开发技术,实现对双芯包覆式保温结构样本点的批量CFD仿真,得出:随着芯材厚度的增加,其面密度呈线性增大、有效导热系数呈非线性减小,与气凝胶相比真空隔热板厚度对保温结构性能的影响更明显。采用代理模型和第二代非劣排序遗传算法进行了双芯包覆式保温结构性能多目标优化,优化后保温结构有效导热系数降低55.56%,且隔热效果优于单芯保温结构。将新型双芯包覆式保温结构应用到某车载方舱中顶板,分析结果表明,在满足面密度指标要求下,中顶板传热系数降低15.76%,显著提升了车载方舱大板的隔热性能。
关键词:    车载方舱    保温结构    ANSYS二次开发    CFD仿真    多目标优化   
Performance optimization design of lightweight composite thermal insulation structure for vehicle shelter
ZENG Xiaojie1, WANG Liangmo1, CHEN Gang1, WANG Tao1, WANG Weili2, LI Xiao2
1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
2. Suzhou Jiangnan Aerospace Mechanical and Electrical Industry Co., Ltd., Suzhou 215300, China
Abstract:
Aiming at the thermal insulation problem of vehicle shelter in high heat and cold environment, with polyurethane foam as the base material, vacuum insulation board and aerogel with low thermal conductivity as the core material, a new composite insulation structure called dual-core cladding thermal insulation structure suitable for vehicle shelter is proposed. Based on the secondary development of ANSYS, the batch CFD simulation of the sample points of the dual-core cladding thermal insulation structure is realized, and it is concluded that its surface density increases linearly and effective thermal conductivity decreases nonlinearly with the increasing of thickness of the core material. Comparing with aerogel, the thickness of the vacuum insulation board has a more obvious influence on the performance of the insulation structure. The proxy model and the second-generation non-inferior ranking genetic algorithm are used to perform the multi-objective optimization of performance of the dual-core cladding thermal insulation structure. After optimization, the effective thermal conductivity of the thermal insulation structure reduced by 55.56%, and the thermal insulation effect is better than that of the single-core thermal insulation structure. The new dual-core cladding thermal insulation structure was applied to the middle roof of a vehicle shelter, the analysis results showed that the heat transfer coefficient of the middle roof reduced by 15.76% under the requirement of surface density, which improved significantly the heat insulation performance of the vehicle shelter slab.
Key words:    vehicle shelter    insulation structure    ANSYS secondary development    CFD simulation    multi-objective optimization   
收稿日期: 2021-05-14     修回日期:
DOI: 10.1051/jnwpu/20224010110
基金项目: 国家自然科学基金(51975295)、国家重点研发计划(2017YFC0806300)与江苏省自然科学基金(BK20190462)资助
通讯作者: 王良模(1963—),南京理工大学教授,主要从事汽车系统动力学、车辆动态模拟与仿真研究。e-mail:liangmo@njust.edu.cn     Email:liangmo@njust.edu.cn
作者简介: 曾小杰(1997—),南京理工大学硕士研究生,主要从事车载方舱CAD/CAE研究。
相关功能
PDF(2899KB) Free
打印本文
把本文推荐给朋友
作者相关文章
曾小杰  在本刊中的所有文章
王良模  在本刊中的所有文章
陈刚  在本刊中的所有文章
王陶  在本刊中的所有文章
王伟利  在本刊中的所有文章
李晓  在本刊中的所有文章

参考文献:
[1] 李岳彬, 魏世丞, 盛忠起, 等. 方舱技术发展综述[J]. 机械设计, 2019, 36(4):5-11 LI Yuebin, WEI Shicheng, SHENG Zhongqi, et al. Summary of the development of shelter technology[J]. Journal of Machine Design, 2019, 36(4):5-11(in Chinese)
[2] 丁华, 李晨, 王海军. 军用方舱传热系数值的计算及优化研究[J]. 兵器装备工程学报, 2019, 40(7):25-29 DING Hua, LI Chen, WANG Haijun. Research on calculation and optimization of the value of military shelter's heat transfer coefficient[J]. Journal of Ordnance Equipment Engineering, 2019, 40(7):25-29(in Chinese)
[3] 万小朋,侯赤,赵美英. 金属多层隔热结构反射屏热阻对传热性能影响数值分析[J]. 西北工业大学学报, 2009, 27(3):310-315 WAN Xiaopeng, HOU Chi, ZHAO Meiying. Numerical analysis of multi-layer insulation foils' thermal resistance's influence on thermal conductivity[J]. Journal of Northwestern Polytechnical University, 2009, 27(3):310-315(in Chinese)
[4] 崔海英, 李鑫. 基于Abaqus的高速列车车体传热系数仿真优化计算[J]. 计算机辅助工程, 2016, 25(4):67-71 CUI Haiying, LI Xin. Simulation and optimization calculation on heat transfer coefficient of high-speed train body based on Abaqus[J]. Computer Aided Engineering, 2016, 25(4):67-71(in Chinese)
[5] 李伟光, 李安邦, 徐新华, 等. 复杂船舶围壁传热系数取值探讨[J]. 中国舰船研究, 2014(2):78-83 LI Weiguang, LI Anbang, XU Xinhua, et al. Heat transfer coefficient of complex ship casing walls[J]. Chinese Journal of Ship Research, 2014(2):78-83(in Chinese)
[6] ISAIA Francesco, STEFANO Fantucci, ALFONSO Capozzoli, et al. Thermal bridges in vacuum insulation panels at building scale[J]. Proceedings of the Institution of Civil Engineers-Engineering Sustainability, 2017, 170(1):47-60
[7] FANG Wenzhen, HU Zhang, LI Chen, et al. Numerical predictions of thermal conductivities for the silica aerogel and its composites[J]. Applied Thermal Engineering, 2017, 115:1277-1286
[8] 郭靓. 方舱热控与气流组织研究[D]. 长沙:中国科学技术大学, 2019 GUO Jing. Research on thermal control and airflow organization of transformable cabin[D]. Changsha:University of Science and Technology of China, 2019(in Chinese)
[9] THAPLIYAL P C, SINGH K. Aerogels as promising thermal insulating materials:an overview[J]. Journal of Materials, 2014, 2014(3):1-10
[10] KALNS S E, JELLE B P. Vacuum insulation panel products:a state-of-the-art review and future research pathways[J]. Applied Energy, 2014, 116(3):355-375
[11] ATIQAH A, MASTURA M T, ALI B A, et al. A review on polyurethane and its polymer composites[J]. Current Organic Synthesis, 2017, 14(2):233-248
[12] 中国人民解放军总装备部. 军用方舱通用试验方法[S]. GJB 2093A-2012
[13] 中国人民共和国铁道部. 铁道客车采暖通风设计参数[S]. TB/T 1955-2000