论文:2021,Vol:39,Issue(6):1368-1376
引用本文:
明瑞晨, 刘小雄, 李煜, 章卫国. 具有约束的双机空战机动控制设计方法研究[J]. 西北工业大学学报
MING Ruichen, LIU Xiaoxiong, LI Yu, ZHANG Weiguo. Study on maneuver control design method of dual aircraft air combat with constraints[J]. Northwestern polytechnical university

具有约束的双机空战机动控制设计方法研究
明瑞晨1,2, 刘小雄1,2, 李煜1,2, 章卫国1,2
1. 西北工业大学 自动化学院, 陕西 西安 710129;
2. 陕西省飞行控制与仿真技术重点实验室, 陕西 西安 710129
摘要:
针对空战轨迹控制中遇到的态势约束问题,提出了一种约束反步法飞行控制律。该方法在考虑传统飞行过程中状态量幅值和带宽约束的同时,将双机空战中的角度态势信息引入到控制律中,在控制律设计中定义跟踪误差的修正量,并使用角度态势信息对修正量进行自适应更新。当角度态势为优势时,认为系统可正常执行机动任务,修正量快速收敛为0;当角度态势为劣势时,则修正量变大,并影响机动使角度态势朝优势变化。仿真结果表明,机动飞行时该方法能快速调整轨迹,使得己机的角度态势朝有利方向变化。
关键词:    飞行控制律    反步法    角度态势信息    修正量   
Study on maneuver control design method of dual aircraft air combat with constraints
MING Ruichen1,2, LIU Xiaoxiong1,2, LI Yu1,2, ZHANG Weiguo1,2
1. School of Automation, Northwestern Polytechnical University, Xi'an 710129, China;
2. Shaanxi Province Key Laboratory of Flight Control and Simulation Technology, Xi'an 710129, China
Abstract:
Aiming at the situation constraint problem in air combat trajectory control, a constrained backstepping flight control law is proposed. This method considers the constraints of the amplitude and bandwidth of the state variables in the traditional flight process. At the same time, it also introduces the situation information of the two aircraft air combat into the control law. The correction error is defined in the control law error, and the angle situation information is used to update the correction error. When the situation is dominant, the system can perform the maneuver task normally, and the correction error converges to 0 quickly When it is a disadvantage, the correction error becomes larger, and affects the maneuver, so that the situation changes to the advantage. The simulation results show that the method can effectively make the situation change in a favorable direction during maneuvering flight.
Key words:    flight control law    backstepping    angle situation information    correction   
收稿日期: 2021-03-31     修回日期:
DOI: 10.1051/jnwpu/20213961368
基金项目: 国家自然科学基金(62073266)、航空科学基金(201905053003)与陕西省自然科学基金(2019JM-163)资助
通讯作者: 刘小雄(1973-),西北工业大学副教授,主要从事导航制导与控制研究。e-mail:liuxiaoxiong@nwpu.edu.cn     Email:liuxiaoxiong@nwpu.edu.cn
作者简介: 明瑞晨(1996-),西北工业大学博士研究生,主要从事飞行控制与控制方法研究。
相关功能
PDF(2476KB) Free
打印本文
把本文推荐给朋友
作者相关文章
明瑞晨  在本刊中的所有文章
刘小雄  在本刊中的所有文章
李煜  在本刊中的所有文章
章卫国  在本刊中的所有文章

参考文献:
[1] JARMARK B. A missile duel between two aircraft[J]. Journal of Guidance, Control, and Dynamics, 1985, 8(4):508-513
[2] JARMARK B. A realistic aerial combat duel as a differential game study[C]//IEEE Conference on Decision & Control, 1983
[3] IMADO F, MIWA S. The optimal evasive maneuver of a fighter against proportional navigation missiles[C]//10th Atmospheric Flight Mechanics Conference, 1983
[4] BYRNES M W. Nightfall:machine autonomy in air-to-air combat[J]. Air and Space Power Journal, 2014, 28(3):48-75
[5] 李清伟, 刘超, 贺嘉璠. 空战分层决策模型构建方法[C]//第八届中国指挥控制大会, 2020 LI Qingwei, LIU Chao, HE Jiafan. The constructing method of hierarchical decision-making model in air combat[C]//Proceedings of the 8th China Command and Control Conference, 2020(in Chinese)
[6] 徐安,陈星,李战武, 等. 基于战术攻击区的超视距空战态势评估方法[J]. 火力与指挥控制,2020,45(9):97-102 XU An, CHEN Xing, LI Zhanwu, et al. A method of situation assessment for beyond-visual-range aircombat based on tactical attack area[J]. Fire Control & Command Control, 2020, 45(9):97-102(in Chinese)
[7] 史振庆,梁晓龙,张佳强, 等. 基于导弹攻击区的空战态势评估[J]. 火力与指挥控制,2018,43(9):89-93 SHI Zhenqing, LIANG Xiaolong, ZHANG Jiaqiang, et al. Situation assessment for air combat based on missile attack zone[J]. Fire Control & Command Control, 2018:43(9):89-93(in Chinese)
[8] 兰轶冰, 王维嘉, 宋科璞. 基于导弹攻击区的空战战术决策方法研究[J]. 电光与控制, 2020, 27(10):8-11 LAN Yibing, WANG Weijia, SONG Kepu. Air combat tactical decision-making based on missile attack envelop[J]. Electronics Optics & Control, 2020, 27(10):8-11(in Chinese)
[9] 王光辉, 徐光达, 谢宇鹏, 等. 区间数模糊综合评判的UCAV空战威胁评估[J]. 现代防御技术, 2018, 46(6):1-6 WANG Guanghui, XU Guangda, XIE Yupeng, et al. UCAV air combat threat assessment based on interval number fuzzy comprehensive evaluation[J]. Modern Defence Technology, 2018, 46(6):1-6(in Chinese)
[10] 赵克新, 黄长强, 魏政磊, 等. 改进决策树的无人机空战态势估计[J]. 哈尔滨工业大学学报, 2019, 51(4):72-79 ZHAO Kexin, HUANG Changqiang, WEI Zhenglei, et al. Situation assessment for unmanned aerial vehicle air combat based on anti-reasoning rules decision tree[J]. Journal of Harbin Institute of Technology, 2019, 51(4):72-79(in Chinese)
[11] XUAN Y B, HUANG C Q, LI W X. Air combat situation assessment by gray fuzzy Bayesian network[J]. Applied Mechanics & Materials, 2011, 69:114-119
[12] 姜龙亭, 寇雅楠, 王栋, 等. 动态变权重的近距空战态势评估方法[J]. 电光与控制, 2019, 26(4):1-5 JIANG Longting, KOU Yanan, WANG Dong, et al. A dynamic variable weight method for situation assessment in close-range air combat[J]. Electronics Optics & Control, 2019, 26(4):1-5(in Chinese)
[13] 谢建峰,杨啟明,戴树岭, 等. 基于强化遗传算法的无人机空战机动决策研究[J]. 西北工业大学学报, 2020, 38(6):1330-1338 XIE Jianfeng, YANG Qiming, DAI Shuling, et al. Air combat maneuver decision based on reinforcement genetic algorithm[J]. Journal of Northwestern Polytechnical University, 2020, 38(6):1330-1338(in Chinese)
[14] 谢俊洁. 空战仿真中的目标分配与火力分配方法[D]. 长沙:国防科技大学, 2016 XIE Junjie. Target allocation and firepower allocation in air combat simulation[D]. Changsha:University of Defense Science and Technology, 2016(in Chinese)
[15] LOWE R, WU Y, TAMAR A, et al. Multi-agent actor-critic for mixed cooperative-competitive environments[C]//Advances in Neural Information Processing Systems, 2017
[16] 蓝伟华. 对抗空战仿真数学建模[J]. 电光与控制, 2009(6):9-11 LAN Weihua. Mathematical modeling of air combat simulation[J]. Electronics Optics & Control, 2009(6):9-11(in Chinese)
[17] 刘佩, 王维嘉, 陈向, 等. 空战机动飞行轨迹生成与控制[J]. 兵工自动化, 2018, 37(11):76-80 LIU Pei, WANG Weijia, CHEN Xiang, et al. Air combat maneuvering flight trajectory generation and control[J]. Ordnance Industry Automation, 2018, 37(11):76-80(in Chinese)