论文:2021,Vol:39,Issue(6):1266-1273
引用本文:
李芳, 黄桥高, 潘光, 施瑶. 波状前缘对水翼湍流干涉噪声的影响[J]. 西北工业大学学报
LI Fang, HUANG Qiaogao, PAN Guang, SHI Yao. Effect of wavy leading edge on hydrofoil-turbulence interaction noise[J]. Northwestern polytechnical university

波状前缘对水翼湍流干涉噪声的影响
李芳1,2, 黄桥高1,2, 潘光1,2, 施瑶1,2
1. 西北工业大学 航海学院, 陕西 西安 710072;
2. 西北工业大学 无人水下运载技术重点实验室, 陕西 西安 710072
摘要:
为解决水下噪声污染问题以及提升水下航行器声隐身性能,根据座头鲸鳍肢前缘结节结构对NACA0020进行波状前缘改型设计。采用大涡模拟和FW-H方程相结合的方法,对改型前后翼型的湍流干涉流场及噪声特性进行了研究。结果表明波状前缘能够有效降低翼型的湍流干涉噪声,尤其是高于89.55 Hz的宽频噪声。波状前缘翼型的总声压级指向性特征与原翼型相同,均呈偶极子特性,但其各个方向上的噪声值均有一定降低。对总声压级进行分频段计算发现波状前缘在1 000~5 000 Hz的中高频段内降噪最好,降噪量可达12.6 dB。通过流场分析得出波状前缘的降噪作用主要与前缘压力脉动降低和展向流动增强导致涡在展向的相干性减弱有关。
关键词:    波状前缘    湍流干涉噪声    大涡模拟    FW-H方程   
Effect of wavy leading edge on hydrofoil-turbulence interaction noise
LI Fang1,2, HUANG Qiaogao1,2, PAN Guang1,2, SHI Yao1,2
1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China;
2. Key Laboratory of Unmanned Underwater Vehicle Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
In order to solve the underwater noise pollution and improve the acoustic stealth performance of underwater vehicles, NACA0020 was bionically modified according to the structure of the leading edge tubercles of humpback fin. The flow field and noise characteristics of the hydrofoil-turbulent interaction model before and after the modification were studied by using the large eddy simulation and the FW-H equation. The results show that the wavy leading edge can effectively reduce the turbulence interaction noise of the hydrofoil, especially the broadband noise after 89.55 Hz. The overall sound pressure level(OASPL) directivity of the wavy leading edge hydrofoil are the same as the original hydrofoil, and both have dipole characteristics, but the noise value in all directions is reduced to a certain extent. The OASPL is calculated and analyzed in different frequency bands. The results show that the OASPL has a best reduction in 1 000-5 000 Hz frequency band, and the noise can be reduced up to 12.6 dB. Through the analysis of flow field, it is concluded that the noise reduction effect of wavy leading edge mainly relates to the decrease in pressure fluctuation at leading edge and the decrease in coherence of vortex in spanwise direction caused by the enhancement of spanwise flow.
Key words:    wavy leading edge    turbulent interaction noise    large eddy simulation    FW-H equation   
收稿日期: 2021-03-15     修回日期:
DOI: 10.1051/jnwpu/20213961266
基金项目: 国家自然科学基金(51979226)与中央高校基本科研业务费专项基金(3102019HHZY030019,3102020HHZY030018)资助
通讯作者: 黄桥高(1983-),西北工业大学副教授,主要从事水动力学研究。e-mail:huangqiaogao@nwpu.edu.cn     Email:huangqiaogao@nwpu.edu.cn
作者简介: 李芳(1992-),女,西北工业大学博士研究生,主要从事水动力学和水下噪声研究。
相关功能
PDF(3346KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李芳  在本刊中的所有文章
黄桥高  在本刊中的所有文章
潘光  在本刊中的所有文章
施瑶  在本刊中的所有文章

参考文献:
[1] FISH F E, BATTLE J M. Hydrodynamic design of the humpback whale flipper[J]. Journal of Morphology, 1995, 225(1):51-60
[2] JOHARI H, HENOCH C W, CUSTODIO D, et al. Effects of leading-edge protuberances on airfoil performance[J]. AIAA Journal, 2007, 45(11):2634-2642
[3] WEI Z, NEW T H, CUI Y D. An experimental study on flow separation control of hydrofoils with leading-edge tubercles at low Reynolds number[J]. Ocean Engineering, 2015, 108(1):336-349
[4] PENA B, MUK-PAVIC E, THOMAS G, et al. Numerical analysis of a leading edge tubercle hydrofoil in turbulent regime[J]. Journal of Fluid Mechanics, 2019, 878:292-305
[5] HANSEN K L, KELSO R M, DOOLAN C J. Reduction of flow induced tonal noise through leading edge tubercle modifications[C]//16th AIAA/CEAS Aeroacoustics Conference, 2010
[6] CHONG T, VATHYLAKIS A, MCEWEN A, et al. Aeroacoustic and aerodynamic performances of an aerofoil subjected to sinusoidal leading edges[C]//21st AIAA/CEAS Aeroacoustics Conference, 2015
[7] 石磊, 张成春, 王晶, 等. NACA0018翼型模型的仿生降噪[J]. 吉林大学学报, 2011, 41(6):1664-1668 SHI Lei, ZHANG Chengchun, WANG Jing, et al. Reduction of aerodynamic noise from NACA0018 airfoil model using bionic methods[J]. Journal of Jilin University, 2011, 41(6):1664-1668(in Chinese)
[8] GRUBER M, JOSEPH P, POLACSEK C, et al. Noise reduction using combined trailing edge and leading edge serrations in a tandem airfoil experiment[C]//18th AIAA/CEAS Aeroacoustics Conference, 2012
[9] CLAIR V, POLACSEK C, GARREC T L, et al. Experimental and numerical investigation of turbulence-airfoil noise reduction using wavy edges[J]. AIAA Journal, 2013, 51(11):2695-2713
[10] PARUCHURI C C, NARAYANAN S, JOSEPH P, et al. Leading edge serration geometries for significantly enhanced leading edge noise reductions[C]//22nd AIAA/CEAS Aeroacoustics Conference, 2016
[11] TURNER J M, KIM J W. On the universal trends in the noise reduction due to wavy leading edges in aerofoil-vortex interaction[J]. Journal of Fluid Mechanics, 2019, 871:186-211
[12] CHEN W, QIAO W, WANG X, et al. An experimental and numerical investigation of airfoil instability noise with leading edge serrations[C]//22nd AIAA/CEAS Aeroacoustics Conference, 2016
[13] CHEN W, QIAO W, DUAN W, et al. Experimental study of airfoil instability noise with wavy leading edges[J]. Applied Acoustics, 2021, 172(5):107671
[14] 姜慧. 新型仿生螺旋桨水动力性能及噪声性能研究[D]. 哈尔滨:哈尔滨工程大学, 2016 JIANG Hui. Reaearch on hydrodynamic and noise performance of bionic propeller[D]. Harbin:Harbin Engineering University, 2016(in Chinese)
[15] WANG M, FREUND J B, LELE S K. Computational prediction of flow-generated sound[J]. Annual Review of Fluid Mechanics, 2005, 38(1):483-512
[16] CASALINO D, JACOB M, ROGER M. Prediction of rod-airfoil interaction noise using the Ffowcs-Williams-Hawkings analogy[J]. AIAA Journal, 2015, 41(5):182-191
[17] GIRET J C, SENGISSEN A, MOREAU S, et al. Prediction of the sound generated by a rod-airfoil configuration using a compressible unstructured les solver and a FW-H analogy[C]//18th AIAA/CEAS Aeroacoustics Conference, 2012
[18] CHEN W, QIAO W, TONG F, et al. Numerical investigation of wavy leading edges on rod-airfoil interaction noise[J]. AIAA Journal, 2018, 56(7):2553-2567
[19] 汤渭霖,俞孟萨,王斌. 水动力噪声理论[M]. 北京:科学出版社, 2019 TANG Weilin, YU Mengsa, WANG Bin. Theory of hydrodynamic noise[M]. Beijing:The Science Publishing Company, 2019(in Chinese)
[20] JACOB M C, BOUDET J, CASALINO D, et al. A rod-airfoil experiment as a benchmark for broadband noise modeling[J]. Theoretical & Computational Fluid Dynamics, 2005, 19(3):171-196