论文:2021,Vol:39,Issue(6):1188-1195
引用本文:
余智豪, 张仕明, 宋彬, 周云. 旋翼干扰对共轴刚性旋翼振动载荷影响分析[J]. 西北工业大学学报
YU Zhihao, ZHANG Shiming, SONG Bin, ZHOU Yun. Vibration loads analysis of coaxial rigid rotor in rotor interaction[J]. Northwestern polytechnical university

旋翼干扰对共轴刚性旋翼振动载荷影响分析
余智豪, 张仕明, 宋彬, 周云
中国直升机设计研究所 直升机旋翼动力学重点实验室, 江西 景德镇 333001
摘要:
针对旋翼干扰下的共轴刚性旋翼振动载荷问题开展计算分析。结合中等变形梁理论的结构动力学模型和含非定常自由尾迹的双旋翼气动模型,建立共轴刚性旋翼振动载荷计算模型。以XH-59A旋翼为研究对象,在模型验证的基础上详细分析旋翼俯仰角α、间距D以及交叉角Ψ对共轴刚性旋翼振动载荷特性影响。研究表明:增加旋翼俯仰角α会降低桨毂垂向力Fz和俯仰力矩My的3Ω谐波幅值,但会大幅增加滚转力矩Mx的3Ω谐波幅值,在高速前飞时利用俯仰角参数能调节桨毂谐波幅值水平;旋翼间距D越小,桨毂谐波幅值越高;交叉角Ψ对桨毂滚转力矩Mx和俯仰力矩My谐波幅值影响较大,在30°交叉角下滚转力矩Mx的3Ω谐波幅值增加量要高于俯仰力矩My的3Ω谐波幅值减少量,而0°交叉角下的桨毂振动载荷整体水平更低。
关键词:    直升机    共轴刚性旋翼    振动载荷    旋翼干扰   
Vibration loads analysis of coaxial rigid rotor in rotor interaction
YU Zhihao, ZHANG Shiming, SONG Bin, ZHOU Yun
Science and Technology on Rotorcraft Aeromechanics Laboratory, CHRDI, Jingdezhen 333001, China
Abstract:
A vibration load computing method for a coaxial rigid rotor was developed and applied to analyzing its vibration load in rotor interference. The structural dynamics model based on the medium-size deformation beam theory and the double-rotor aerodynamics model that contains unsteady free wake were jointly used to develop the coaxial rigid rotor's vibration load computing method. The wind tunnel test data of the XH-59A helicopter was used to validate this computing method. The vibration load of a rotor hub was analyzed in detail. The results show that the 3Ω harmonic wave amplitude of the vertical force Fz of the rotor hub and that of its pitch moment My decrease in high pitch angle, but the 3Ω harmonic wave amplitude of the roll moment Mx of the rotor hub obviously increases. The vibration load of the rotor hub increases with the decrease of the range of the coaxial rigid rotor; the roll moment and pitch moment of the rotor hub are sensitive to phase angle. The results also show that the increase of the harmonic wave amplitude of the roll moment Mx is greater than the decrease of that of the roll moment My at the phase angle of 30° and that the level of vibration load of the rotor hub is minimum at the phase angle of 0° in forward flight.
Key words:    helicopter    coaxial rigid rotor    vibration loads    rotor interaction   
收稿日期: 2021-03-06     修回日期:
DOI: 10.1051/jnwpu/20213961188
通讯作者: 周云(1986-),中国直升机设计研究所高级工程师,主要从事直升机旋翼动力学研究。e-mail:zhouyun1986@aliyun.com     Email:zhouyun1986@aliyun.com
作者简介: 余智豪(1993-),中国直升机设计研究所工程师,主要从事直升机旋翼动力学研究。
相关功能
PDF(3653KB) Free
打印本文
把本文推荐给朋友
作者相关文章
余智豪  在本刊中的所有文章
张仕明  在本刊中的所有文章
宋彬  在本刊中的所有文章
周云  在本刊中的所有文章

参考文献:
[1] 吴希明. 共轴刚性旋翼空气动力学问题与研究进展[J]. 南京航空航天大学学报, 2019, 51(2):137-146 WU Ximing. Aerodynamic problems and research progresses of rigid coaxial rotor[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2):137-146(in Chinese)
[2] NICK Tuozzo, ERIC Fox, EREZ Eller, et al. Analytic tool correlation status for the joint multi-role technology demonstrator program[C]//73rd Annual AHS International Forum and Technology Display, Texas, 2017
[3] PETER Lorber, PATRICK Bowles, ERIC Fox, et al. Wind tunnel testing for the SB>1 defiantTM joint multi-role technology demonstrator[C]//73rd Annual AHS International Forum and Technology Display, Texas, 2017
[4] BJORN C F, JORDAN A K, ALEXANDER Q W, et al. Speed and maneuverability benefits of Sikorsky's X2 technologyTM versus air defense artillery[C]//75th Annual Vertical Flight Society Forum and Technology Display, Philadelphia, 2019:2751-2756
[5] 邓景辉. 高速直升机前行桨叶概念旋翼技术[J]. 航空科学技术, 2012(3):9-14 DENG Jinghui. The ABC rotor technology for high speed helicopter[J]. Aeronautical Science and Technology, 2012(3):9-14(in Chinese)
[6] BURGESS R. The ABC(TM) Rotor-a historical perspective[C]//60th AHS International Annual Forum Vertical Flight Transformation, Baltimore MD, 2004
[7] BLACKWELL R, MILLOTT T. Dynamics design characteristics of the Sikorsky X2 technologyTM demonstrator aircraft[C]//64th Annual AHS International Forum and Technology Display, Montreal, 2008
[8] CHRISTOPHER Cameron, JAYANT Sirohi. Performance and loads of a model coaxial rotor part Ⅰ:wind tunnel testing[C]//72nd Annual AHS International Forum and Technology Display, West Palm Beach, 2016
[9] JOSEPH Schmaus, INDERJIT Chopra. Performance and loads of a model coaxial rotor part Ⅱ:prediction validations with measurements[C]//72nd Annual AHS International Forum and Technology Display, West Palm Beach, 2016:1309-1326
[10] VERA Klimchenko, JAMES Baeder. CFD/CSD study of interactional aerodynamics of a coaxial compound helicopter in high speed forward flight[C]//AIAA Sci Tech Form and Expositon, Applied aerodynamics, Oriando, 2020
[11] UEHARA Dajiu, SIROHI Jayant. Blade passage loads and deformation of a coaxial rotor system in hover[J]. Journal of Aircraft, 2019, 56(6):2144-2157
[12] ROLAND Feil, MANFRED Hajek. Vibratory load predictions of a high-advance-ratio coaxial rotor system validated by wind tunnel tests[J]. Journal of Fluids and Structures, 2020, 9(2):1277-1293
[13] JACOBELLIS G, GANDHI F. Investigation of performance, loads, and vibrations of a coaxial helicopter in high speed-flight[C]//72nd Annual AHS International Forum and Technology Display, West Palm Beach, 2016
[14] 卢从玲, 史勇杰, 徐国华, 等. 共轴刚性旋翼悬停状态气动干扰机理[J]. 南京航空航天大学学报, 2019, 51(2):201-207 LU Congling, SHI Yongjie, XU Guohua, et al. Research on aerodynamic interaction mechanism of rigid rotor in hover[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2):201-207(in Chinese)
[15] 谭剑锋, 孙义鸣, 王浩文, 等. 共轴刚性双旋翼非定常气动干扰载荷分析[J]. 北京航空航天大学学报, 2018, 44(1):50-62 TAN Jianfeng, SUN Yiming, WANG Haowen, et al. Analysis of rigid coaxial rotor unsteady interactional aerodynamic loads[J]. Beijing University of Aeronautics and Astronautics, 2018, 44(1):50-62(in Chinese)
[16] 余智豪. 基于CFD/CSD耦合的共轴刚性双旋翼振动载荷分析[D]. 南京:南京航空航天大学, 2018 YU Zhihao. Computational analysis on vibration loads of coaxial rigid rotor based on CFD/CSD coupling[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018(in Chinese)
[17] 王松. 基于CFD/CSD松耦合的直升机稳态飞行状态配平与载荷预估[D]. 南京:南京航空航天大学, 2019 WANG Song. Trim and load estimation of steady flight state of helicopter based on CFD/CSD loose coupling[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2019(in Chinese)
[18] FELKER F F. Performance and loads data form a wind tunnel test of a full-scale, coaxial, hingeless rotor helicopter[R]. NASA TM81329, 1981