论文:2021,Vol:39,Issue(6):1169-1178
引用本文:
宋敏华, 宋文萍, 王跃, 韩忠华, 张彦军, 雷武涛. 涡桨飞机缩比模型机体噪声预测研究[J]. 西北工业大学学报
SONG Minhua, SONG Wenping, WANG Yue, HAN Zhonghua, ZHANG Yanjun, LEI Wutao. Noise prediction research of a scaled turboprop aircraft[J]. Northwestern polytechnical university

涡桨飞机缩比模型机体噪声预测研究
宋敏华1,2, 宋文萍1, 王跃1, 韩忠华1, 张彦军3, 雷武涛3
1. 西北工业大学 翼型、叶栅空气动力学重点实验室 气动与多学科优化设计研究所, 陕西 西安 710072;
2. 中国航空研究院, 北京 100029;
3. 航空工业第一飞机设计研究院, 陕西 西安 710089
摘要:
民用飞机机体噪声水平已成为衡量飞机性能的重要指标,受到了越来越多的关注。当前基于CFD数值模拟的机体噪声预测研究大多针对飞机单独部件开展,缺乏对全机高保真复杂构型的噪声预测。由于部件之间的干扰,针对部件的噪声预测在计算条件、噪声的产生及传播等方面均和实际构型之间存在很大的差异,因此采用高保真真实飞机模型才能对飞机机体噪声进行更准确的预测。采用精细化高分辨率网格与高精度混合RANS/LES方法,结合FW-H声类比方法,对涡桨飞机高保真1/6缩比模型在降落状态下的气动噪声进行了数值预测研究。采用改进的延迟分离涡模拟(IDDES)方法对近场声源区流动进行模拟,得到了涡桨飞机全机的近场声源特性。除了捕捉到襟翼侧缘和翼尖2个重要噪声源之外,还发现了由短舱尾迹和后缘襟翼之间的干扰引起的噪声源、襟翼内侧和机身之间的复杂流动引起的噪声源。远场噪声研究结果显示,在机身的纵向对称面内,噪声主要向前下方和后上方传播,偶极子特性十分明显。在垂直于来流的平面内,横向噪声较弱。
关键词:    计算流体力学    飞机噪声    FW-H声类比    IDDES   
Noise prediction research of a scaled turboprop aircraft
SONG Minhua1,2, SONG Wenping1, WANG Yue1, HAN Zhonghua1, ZHANG Yanjun3, LEI Wutao3
1. Institute of Aerodynamic and Multidisciplinary Design Optimization, Key Laboratory of Science and Technology on Aerodynamic Design and Research, Northwestern Polytechnical University, Xi'an 710072, China;
2. Chinese Aeronautical Establishment, Beijing 100029, China;
3. AVIC the First Aircraft Institute, Xi'an 710089, China
Abstract:
Aerodynamic noise level has become an important performance index of civil aircraft, and it is drawing more and more attention. Most airframe noise research based on CFD method is aimed at aircraft individual parts at present, while lack of noise prediction for the complex high fidelity full aircraft model. Due to the interaction between aircraft parts, noise prediction between single part and the actual configuration are very different in the aspect of calculation conditions, noise generation and propagation. Only by using more realistic model can the noise be accurately predicted. In this paper, high-resolution mesh and high-precision hybrid RANS/LES method, combined with the FW-H acoustic analogy method, are employed to predict the noise of a turboprop's high-fidelity 1/6 scale model of landing configure. The improved delayed detached eddy simulation (IDDES) method was used to simulate the flow in the near-field sound source region, and the sound source characteristics of the whole turboprop are obtained. In addition to the two important noise sources-flap side edge and wing tip, numerical simulation also found other two important noise sources resulting from the interaction between parts-interaction between nacelle wake and flap, and the complex flow between flap inner side and fuselage. Results of far-field noise show that in the longitudinal symmetry plane of the fuselage, the noise mainly propagates to the lower front and over back direction, and the dipole characteristics are very obvious. In the plane perpendicular to the incoming flow, the noise in the transverse direction is weaker.
Key words:    computational fluid dynamics    aircraft noise    FW-H acoustic analogy    IDDES   
收稿日期: 2021-04-08     修回日期:
DOI: 10.1051/jnwpu/20213961169
通讯作者: 宋文萍(1964-),西北工业大学教授,主要从事设计空气动力学、气动噪声研究。e-mail:wpsong@nwpu.edu.cn     Email:wpsong@nwpu.edu.cn
作者简介: 宋敏华(1995-),西北工业大学硕士研究生,主要从事计算流体力学、气动噪声研究。
相关功能
PDF(4585KB) Free
打印本文
把本文推荐给朋友
作者相关文章
宋敏华  在本刊中的所有文章
宋文萍  在本刊中的所有文章
王跃  在本刊中的所有文章
韩忠华  在本刊中的所有文章
张彦军  在本刊中的所有文章
雷武涛  在本刊中的所有文章

参考文献:
[1] DOBRZYNSKI W. Almost 40 years of airframe noise research:what did we achieve?[J]. Journal of Aircraft, 2010, 47(2):353-367
[2] FINK M R. Noise component method for airframe noise[J]. Journal of Aircraft, 1979, 16(10):659-665
[3] KHORRAMI M R, SINGER B A, Berkman M E. Time-accurate simulations and acoustic analysis of slat free-shear-layer[J]. AIAA Journal, 2001, 40(7):1284-1291
[4] DECK S, LARAUFIE R. Numerical investigation of the flow dynamics past a three-element aerofoil[J]. Journal of Fluid Mechanics, 2013, 732:401-444
[5] TERRACOL M, MANOHA E. Wall-resolved large eddy simulation of a highlift airfoil:detailed flow analysis and noise generation study[C]//AIAA/CEAS Aeroacoustics Conference, 2014
[6] SANDBERG R D. Compressible-flow DNS with application to airfoil noise[J]. Flow Turbulence & Combustion, 2015, 95:211-229
[7] KHORRAMI M R, MINECK R E. Towards full aircraft airframe noise prediction:detached eddy simulations[C]//20th AIAA/CEAS Aeroacoustics Conference, 2014
[8] KHORRAMI M R, FARES E. Simulation-based airframe noise prediction of a full-scale, full aircraft[C]//22nd AIAA/CEAS Aeroacoustics Conference, 2016
[9] APPELBAUM J, DUDA B, FARES E, et al. Airframe noise simulations of a full-scale aircraft[C]//24th AIAA/CEAS Aeroacoustics Conference, 2018
[10] KONIG B, FARES E, RAVETTA P, et al. A comparative study of simulated and measured main landing gear noise for large civil transports[C]//23rd AIAA/CEAS Aeroacoustics Conference, 2017
[11] YAMAMOTO K, TAKAISHI T, MURAYAMA M, et al. FQUROH:a flight demonstration project for airframe noise reduction technology-the 1st flight demonstration[C]//23rd AIAA/CEAS Aeroacoustics Conference, 2017
[12] YAMAMOTO K, TAKAISHI T, MURAYAMA M, et al. FQUROH:a flight demonstration project for airframe noise reduction technology-the 2nd flight demonstration[C]//24th AIAA/CEAS Aeroacoustics Conference, 2018
[13] ZHANG Y F, CHEN H X, WANG K, et al. Aeroacoustic prediction of a multi-element airfoil using wall-modeled large-eddy simulation[J]. AIAA Journal, 2017, 55(12):4219-4233
[14] 龙双丽, 聂宏, 薛彩军, 等. 飞机起落架气动噪声特性仿真与试验[J]. 航空学报, 2012, 33(6):1002-1013 LONG Shuangli, NIE Hong, XUE Caijun, et al. Simulation and experiment on aeroacoustic noise characteristic of aircraft landing gear[J]. Acta Aeronautica Et Astronautica Sinica, 2012, 33(6):1002-1013(in Chinese)
[15] XIAO Z, LIU J, LUO K, et al. Investigation of flows around a rudimentary landing gear with advanced detached-eddy-simulation approaches[J]. AIAA Journal, 2013, 51(1):107-125
[16] SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat & Fluid Flow, 2008, 29(6):1638-1649
[17] FFOWCS WILLIAMS J E, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Trans of the Royal Society of London. Series A Mathematical and Physical Sciences, 1969, 264(1151):321-342
[18] FARASSAT F, SUCCI G P. A review of propeller discrete frequency noise prediction technology with emphasis on two current methods for time domain calculations[J]. Journal of Sound & Vibration, 1980, 71(3):399-419
[19] CHOUDHARI M, LOCKARD D P, BANC-III Category-7 Team. Assessment of slat noise predictions for 30P30N high-lift configuration from BANC-III workshop[C]//21st AIAA/CEAS Aeroacoustics Conference. 2015
[20] MURAYAMA M, NAKAKITA K, YAMAMOTO K, et al. Experimental study on slat noise from 30P30N three-element high-lift airfoil at JAXA hard-wall lowspeed wind tunnel[C]//20th AIAA/CEAS Aeroacoustics Conference, 2014
[21] PASCIONI K, CATTAFESTA L N, CHOUDHARI M. An experimental investigation of the 30P30N multi-element high-lift airfoil[C]//20th AIAA/CEAS Aeroacoustics Conference, 2014
[22] HOUSMAN J A, STICH G D, KOCHEEMOOLAYIL J G, et al. Predictions of slat noise from the 30P30N at high angles of attack using zonal hybrid RANS-LES[C]//25th AIAA/CEAS Aeroacoustics Conference, 2019
[23] PASCIONI K A, CATTAFESTA L N. Aeroacoustic measurements of leading-edge slat noise[C]//22nd AIAA/CEAS Aeroacoustics Conference, 2016