论文:2021,Vol:39,Issue(5):962-970
引用本文:
卢俊, 张群飞, 史文涛, 张玲玲. 基于通信信号的水下目标主动探测多普勒估计与补偿方法[J]. 西北工业大学学报
LU Jun, ZHANG Qunfei, SHI Wentao, ZHANG Lingling. Doppler estimation and compensation method for underwater target active detection based on communication signal[J]. Northwestern polytechnical university

基于通信信号的水下目标主动探测多普勒估计与补偿方法
卢俊, 张群飞, 史文涛, 张玲玲
西北工业大学 航海学院, 陕西 西安 710072
摘要:
水下探测通信一体化利用通信发射信号进行目标主动探测,而多普勒效应的存在使得主动探测中目标参数估计性能恶化。为了消除多普勒效应的影响,提出一种基于频谱细化与校正的联合多普勒估计和补偿方法。该方法利用通信发射信号中的同步头信号获取目标回波信号时延,截取信号中的单频信号段。再利用离散傅里叶变换(DFT)求得单频信号段最大幅值所对应的频率,并在该频率附近范围内进行频谱细化与校正求出频率偏移量,从而估计出多普勒因子,并根据所估计的多普勒因子对接收的目标回波信号进行补偿。仿真结果表明,所提的频谱细化与校正联合多普勒估计与补偿方法提高了多普勒估计精度,使多普勒补偿后的信号与发射副本相关处理增益增加,提高了波达方向(DOA)估计性能,并且对不同多普勒效应具有良好的鲁棒性。
关键词:    多普勒估计与补偿    探测通信一体化    通信信号    频谱细化    频谱校正   
Doppler estimation and compensation method for underwater target active detection based on communication signal
LU Jun, ZHANG Qunfei, SHI Wentao, ZHANG Lingling
School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
The integration of underwater detection and communication uses communication signals to detect a target actively, but the Doppler effect deteriorates the parameter estimation performance of the integrated system. To eliminate the influence of the Doppler effect, a joint Doppler estimation and compensation method based on spectrum zooming and correction is proposed. Firstly, the synchronization signal is used to obtain the signal receiving delay and intercept the single-frequency signal segment in the received signal. Then, the discrete Fourier transform is used to find the frequency that corresponds to the maximum amplitude of the single-frequency signal segment. Finally, the frequency spectrum is refined and corrected within the range near the frequency. The Doppler factor is estimated and the received signal is compensated by the Doppler estimation value. The simulation results show that the proposed method improves Doppler factor estimation accuracy, increases the cross-correlation processing gain and improves DOA (direction of arrival) estimation performance, thus being robust to different Doppler effects.
Key words:    Doppler estimation and compensation    integration of underwater detection and communication    communication signal    spectrum zooming    spectrum correction   
收稿日期: 2020-12-25     修回日期:
DOI: 10.1051/jnwpu/20213950962
基金项目: 国家重点研发计划(2016YFC1400203)、国家自然科学基金(61531015,61701529)与中央高校基金(3102019HHZY030013)资助
通讯作者: 史文涛(1985-),西北工业大学副教授,主要从事阵列信号处理研究。e-mail:swt@nwpu.edu.cn     Email:swt@nwpu.edu.cn
作者简介: 卢俊(1989-),西北工业大学博士研究生,主要从事水下探测通信一体化研究。
相关功能
PDF(2180KB) Free
打印本文
把本文推荐给朋友
作者相关文章
卢俊  在本刊中的所有文章
张群飞  在本刊中的所有文章
史文涛  在本刊中的所有文章
张玲玲  在本刊中的所有文章

参考文献:
[1] 卢俊,张群飞,史文涛. 水下探测通信一体化关键技术分析[J]. 水下无人系统学报,2018, 26(5):106-115 LU Jun, ZHANG Qunfei, SHI Wentao. Analysis on the key technology of integrated underwater detection and communication[J]. Journal of Unmanned Undersea Systems, 2018, 26(5):470-479(in Chinese)
[2] KASSEM J, BARBEAU M, et al. Doppler effect in the acoustic ultra low frequency band for wireless underwater networks[J]. Mobile Networks and Applications, 2018, 23:1282-1292
[3] ZHOU J, NIE X M, LIN J. A novel laser doppler velocimeter and its integrated navigation system with strapdown inertial navigation[J]. Optics & Laser Technology, 2014, 64:319-323
[4] 厉文涛, 聂晓明, 周健. 基于二维激光多普勒测速仪建立新组合导航系统的方法[J]. 中国激光, 2020, 47(3):1-6 LI Wentao, NIE Xiaoming, ZHOU Jian. Method for establishing new integrated navigation system based on two-dimensional laser doppler velocimete[J]. Chinese Journal of Lasers, 2020, 47(3):1-6(in Chinese)
[5] DENBIGH P N. Ship velocity determination by doppler and correlation techniques[J]. IEEE Proceeding F-Commanications, Radar and Signal Processing, 1984, 131(3):315-326
[6] ZEDEL L, HAY A E. Resolving velocity ambiguity in multi-frequency, pulse-to-pulse coherent doppler sonar[J]. IEEE Journal of Oceanic Engineering, 2010, 35(4):847-851
[7] WANIS P, BRUMLEY B, GAST J, et al. Sources of measurement variance in broadband acoustic doppler current profilers[C]//OCEANS 2010 MTS/IEEE SEATTLE, Seattle, WA, 2010:1-5
[8] CHEN Y, YIN J, ZOU L. Null subcarriers based doppler scale estimation with polynomial interpolation for multicarrier communication over ultrawideband underwater acoustic channels[J]. Journal of Systems Engineering & Electronics, 2015(6):1177-1183
[9] ABDELKAREEM A E, SHARIF B S, TSIMENIDIS C C, et al. Time varying doppler-shift compensation for OFDM-based shallow underwater acoustic communication systems[C]//IEEE International Conference on Mobile Adhoc & Sensor Systems, 2011
[10] TANG C, LIAN B, ZHANG L. Doppler-aided channel estimation in satellite communication base on frequency-domain equalization[C]//2013 Integrated Communications, Navigation and Surveillance Conference, 2013
[11] YILMAZ U C, CAVDAR I H. The effects of orbital parameters accuracy on doppler frequency shift for intersatellite optical communication[C]//International Conference on Application of Information & Communication Technologies, 2013
[12] SEN S, NEHORAI A. Adaptive design of OFDM radar signal with improved wideband ambiguity function[J]. IEEE Trans on Signal Processing, 2010, 58(2):928-933
[13] RIFE D C, VINCENT G A. Use of the discrete fourier transform in the measurement of frequencies and levels of tones[J]. Bell Labs Technical Journal, 1970, 49(2):197-228
[14] 齐国清, 贾欣乐. 插值FFT估计正弦信号频率的精度分析[J]. 电子学报, 2004, 32(4):625-629 QI Guoqing, JIA Xinle. Accuracy analysis of frequency estimation of sinusoid based on interpolate FFT[J]. Acta Electronica Sinica, 2004, 32(4):625-629(in Chinese)
[15] SONG M, LIM J, SHIN D, et al. Enhancing doppler estimation via newton interpolation for automotive FMCW radars[C]//2014 International Conference on Information and Communication Technology Convergence, Busan, 2014:615-616
[16] 陆松鹤. 多载波移动水声通信中的同步技术研究[D]. 哈尔滨:哈尔滨工程大学,2009 LU Songhe. Study on synchronization in multi-carrier mobile underwater acoustic communication[D]. Harbin:Harbin Engineering University, 2009(in Chinese)
[17] 赵宏强. 频谱细化算法分析[J]. 四川兵工学报, 2013, 34(5):105-112 ZHAO Hongqiang. Analysis of spectrum zoom algorithms[J]. Journal of Ordnance Equipment Engineering, 2013, 34(5):105-112(in Chinese)
[18] SYSEL P, RAJMIC P. Goertzel algorithm generalized to non-integer multiples of fundamental frequency[J]. Journal on Advances in Signal Processing, 2012, 56:1-8
[19] MA L, JIA H, LIU S, et al. Low-complexity doppler compensation algorithm for underwater acoustic OFDM systems with nonuniform doppler shifts[J]. IEEE Communications Letters, 2020, 24(9):2051-2054
[20] 宋鑫超, 刘启明, 苏庆堂. 基于FFT最大谱线处相位差的频谱校正方法[J]. 控制工程, 2017, 24(5):1086-1089 SONG Xinchao, LIU Qiming, SU Qingtang. Spectrum correction method based on FFT maximum spectrum phase difference[J]. Contral Engineering of China, 2017, 24(5):1086-1089(in Chinese)
[21] HUANG R, DU X Y, HU W D. UAV target detection and parameter estimation in non-homogeneous clutter[J]. The Journal of Engineering, 2019, 20:6750-6754
[22] 丁康, 谢明, 杨志坚. 离散频谱分析校正理论与技术[M]. 北京:科学出版社, 2008 DING Kang, XIE Ming, YANG Zhijian. The theory and technology of discrete spectrum correction[M]. Beijing:Beijing Science Press, 2008(in Chinese)
[23] 朱小勇,丁康. 离散频谱校正方法的综合比较[J]. 信号处理, 2001,17(1):91-97 ZHU Xiaoyong, DING Kang. Comprehensive comparison of discrete spectrum correction methods[J]. Signal Processing, 2001, 17(1):91-97(in Chinese)