论文:2021,Vol:39,Issue(4):810-817
引用本文:
赵海瑞, 施瑶, 潘光. 头部喷气航行器高速入水空泡特性数值分析[J]. 西北工业大学学报
ZHAO Hairui, SHI Yao, PAN Guang. Numerical simulation of cavitation characteristics in high speed water entry of head-jetting underwater vehicle[J]. Northwestern polytechnical university

头部喷气航行器高速入水空泡特性数值分析
赵海瑞1,2, 施瑶1,2, 潘光1,2
1. 西北工业大学 航海学院, 陕西 西安 710072;
2. 无人水下运载技术工信部重点实验室, 陕西 西安 710072
摘要:
航行器在高速入水的过程中会受到巨大的冲击载荷作用,它会破坏航行器结构并损坏内部仪器,因此开展航行器入水缓冲机理的研究是很有意义的。使用一种带圆盘空化器的头部喷气装置,在气液固三相耦合下,航行器入水过程产生了复杂的空泡形态。开展了加装头部喷气装置的航行器高速入水数值模拟研究,通过对典型工况下入水空泡的分析,得到如下结论:加装头部喷气装置后航行器入水空泡由锥形逐渐变化为纺锤形;与不喷气时相比,喷气可促进入水超空泡的生成,减小入水过程中航行器与水的作用面积,降低该过程中的冲击载荷;同一入水深度下,空泡直径随喷气量而增大。入水速度对空泡形态差异性影响较大,其中入水速度100 m/s以下时可在3.5倍弹长的入水深度内观察到入水深闭合现象。入水角对空泡形态有明显影响,斜入水时空泡呈现明显不对称性,且空泡直径与长度随入水角增大而减小。研究内容为航行器高速入水降载的工程实际提供了技术支持,所得结论在相关领域具有重要意义。
关键词:    数值模拟    航行器    入水    空泡    头部喷气   
Numerical simulation of cavitation characteristics in high speed water entry of head-jetting underwater vehicle
ZHAO Hairui1,2, SHI Yao1,2, PAN Guang1,2
1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China;
2. Key Laboratory of Unmanned Underwater Vehicle Technology of Ministry of Industry and Information Technology, Xi'an 710072, China
Abstract:
Autonomous underwater vehicle will be subjected to a huge impact load during high speed water entry, which will damage the structure and the internal instruments of the vehicle. Therefore, it is of great significance to study the buffer mechanism of the vehicle during the process of water-entry. In this paper, a kind of head-jetting device with disk cavitation is used. The complex cavitation forms, under the three-phase coupling of gas, liquid and solid, in the water entry process of the vehicle on which the device is installed. In this paper, the numerical simulation of high-speed water entry of the vehicle equipped with head jet device is carried out. Through the analysis of water entry cavitation under typical working conditions, the following conclusions are obtained. After the installation of head jet device, the water entry cavity of the vehicle changes gradually from cone to spindle shape. The air jet, compared with that without jet, can promote the formation of water inlet supercavitation, decrease the interaction area between the vehicle and water, and reduce the impact load during water entry. At the same water entry depth, the diameter of cavitation increases with the amount of air jet. The water entry velocity has a great influence on the difference of cavitation shape. The water entry depth closure phenomenon, when the water entry velocity is less than 100 m/s, can be observed in the depth of 3.5 times of the projectile length. The water entry angle has a significant effect on the cavitation shape. The cavity shows obvious asymmetry when the vehicle slants into the water, and the diameter and length of the bubbles decrease with the increase of the water entry angle. The research content of this paper provides technical support for the engineering practice of high-speed water entry and load reduction, and the conclusions are of great significance in related fields.
Key words:    numerical simulation    underwater vehicle    water entry    cavitation    head-jetting   
收稿日期: 2020-10-20     修回日期:
DOI: 10.1051/jnwpu/20213940810
基金项目: 国家自然科学基金(51709229,61803306)与中央高校基本业务费(3102019JC006)资助
通讯作者: 施瑶(1988-),西北工业大学副研究员,主要从事高速水动力学研究。e-mail:shiyao@nwpu.edu.cn     Email:shiyao@nwpu.edu.cn
作者简介: 赵海瑞(1991-),西北工业大学博士研究生,主要从事航行器高速入水技术研究。
相关功能
PDF(4107KB) Free
打印本文
把本文推荐给朋友
作者相关文章
赵海瑞  在本刊中的所有文章
施瑶  在本刊中的所有文章
潘光  在本刊中的所有文章

参考文献:
[1] VON Karman T. The impact on seaplane floats during landing[J]. 1929, 321:1-9
[2] WAGNER H. Phenomena associated with impacts and sliding on liquid surfaces[J]. Math Mech, 1932, 12(4):193215
[3] PUKHNACHOV V V. Linear approximation in the problem on a blunt body entry in water[J]. Din Sploshnoi Sredy, 1979, 38:143-150
[4] CHUANG S L. Experiments on flat-bottom slamming[J]. Journal of Ship Research, 1966, 10(1):10-27
[5] CHUANG S L. Experiments on slamming of wedge-shapes bodies[J]. Journal of Ship Research, 1967, 11(3):190-198
[6] 陈震, 肖熙. 空气垫在平底结构入水砰击中作用的仿真分析[J]. 上海交通大学学报, 2005, 39(5):670-673 CHEN Zhen, XIAO Xi. Simulation analysis on the role of air cushion in the slamming of a flat-bottom structure[J]. Journal of Shanghai Jiaotong University, 2005, 39(5):670-673(in Chinese)
[7] LOGVINOVICH G V. Hydrodynamics of flows with free boundaries[M]. Kiev, Naukova Dumka Publishers, 1969
[8] DUCLAUX V, CAILLÉ F, Duez C, et al. Dynamics of transient cavities[J]. Journal of Fluid Mechanics, 2007, 591:1-19
[9] WORTHINGTON A M, Cole R S. Impact with a liquid surface studied by the aid of instantaneous photography[J]. Philosophical Transactions of the Royal Society, 1900, 194(A):175-200
[10] BELL Eric G. LXXVI on the impact of a solid sphere with a fluid surface and the influence of surface tension, surface layers, and viscosity on the phenomenon[J]. Philosophical Magazine, 1924, 48(287):753-764
[11] MACCOLL J W. Aerodynamics of a spinning sphere[J]. Royal Aeronautical Society Journal, 1928, 32:777-798
[12] 马庆鹏, 魏英杰, 王聪, 等. 不同头型运动体高速入水空泡数值模拟[J]. 哈尔滨工业大学学报, 2014, 46(11):24-29 MA Qingpeng, WEI Yingjie, WANG Cong, et al. Numerical simulation of high-speed water entry cavity of cylinders[J]. Journal of Harbin Institute of Technology, 2014, 46(11):24-29(in Chinese)
[13] 潘龙, 王焕然, 姚尔人, 等. 头部喷气平头圆柱体入水缓冲机制研究[J]. 工程热物理学报, 2015, 36(8):1691-1695 PAN Long, WANG HuanRan, YAO Erren, et al. Mechanism research on the water-entry impact of the head-jetting flat cylinder[J]. Journal of Engineering Thermophysics, 2015, 36(8):1691-1695(in Chinese)
[14] 刘华坪, 余飞鹏, 韩冰, 等. 头部喷气影响航行体入水载荷的数值模拟[J]. 工程热物理学报, 2019, 40(2):300-305 LIU Huaping, YU Feipeng, HAN Bing, et al. Numerical simulation study on influence of top jet in object water entering impact[J]. Journal of Engineering Thermophysics, 2019, 40(2):300-305(in Chinese)
相关文献:
1.许海雨, 罗凯, 黄闯, 左振浩.通气超空化流域径向尺度影响[J]. 西北工业大学学报, 2020,38(3): 478-484
2.宋保维, 朱信尧, 单志雄, 王鹏.UUV海底定点停驻受力特性及稳定性分析[J]. 西北工业大学学报, 2012,30(1): 94-101