论文:2021,Vol:39,Issue(4):753-760
引用本文:
刘晓冬, 张沛良, 何光洪, 王永恩, 杨旭东. 基于伴随方法的飞翼布局多目标气动优化设计[J]. 西北工业大学学报
LIU Xiaodong, ZHANG Peiliang, HE Guanghong, WANG Yongen, Yang Xudong. Multi-objective aerodynamic optimization of flying-wing configuration based on adjoint method[J]. Northwestern polytechnical university

基于伴随方法的飞翼布局多目标气动优化设计
刘晓冬1, 张沛良1, 何光洪1, 王永恩1, 杨旭东2
1. 沈阳飞机设计研究所, 辽宁 沈阳 110035;
2. 西北工业大学 航空学院, 陕西 西安 710072
摘要:
针对飞翼布局气动设计中的多目标多约束设计问题,开展了基于伴随方法的气动优化设计研究。构建合理的统一目标函数,并根据伴随方法基本原理推导了相应的伴随方程边界条件及梯度求解方程,采用N-S方程和伴随气动优化设计方法,进行了2种不同展弦比飞翼布局的跨声速减阻优化设计,优化结果表明:在满足气动、几何约束的前提下,飞翼布局跨声速激波阻力被很大程度削弱,证明了所发展的方法在飞翼布局多目标多约束气动设计上具有较高的优化效率和良好的优化效果。
关键词:    伴随方法    气动优化设计    多目标优化    飞翼布局   
Multi-objective aerodynamic optimization of flying-wing configuration based on adjoint method
LIU Xiaodong1, ZHANG Peiliang1, HE Guanghong1, WANG Yongen1, Yang Xudong2
1. Shenyang Aircraft Design and Research Institute, Shenyang 110035, China;
2. School of Aeronautics, Northwestern Polytechnic University, Xi'an 710072, China
Abstract:
In order to solve the multi-objective multi-constraint design in aerodynamic design of flying wing, the aerodynamic optimization design based on the adjoint method is studied. In terms of the principle of the adjoint equation, the boundary conditions and the gradient equations are derived. The Navier-Stokes equations and adjoint aerodynamic optimization design method are adopted, the optimization design of the transonic drag reduction for the two different aspect ratio of the flying wing configurations is carried out. The results of the optimization design are as follows:Under the condition of satisfying the aerodynamic and geometric constraints, the transonic shock resistance of the flying wing is weakened to a great extent, which proves that the developed method has high optimization efficiency and good optimization effect in the multi-objective multi-constraint aerodynamic design of the flying wing.
Key words:    adjoint method    aerodynamic optimization design    multi-objective optimization    flying-wing configuration   
收稿日期: 2020-11-06     修回日期:
DOI: 10.1051/jnwpu/20213940753
通讯作者:     Email:
作者简介: 刘晓冬(1987-),沈阳飞机设计研究所高级工程师,主要从事无人机气动力设计研究。
相关功能
PDF(1570KB) Free
打印本文
把本文推荐给朋友
作者相关文章
刘晓冬  在本刊中的所有文章
张沛良  在本刊中的所有文章
何光洪  在本刊中的所有文章
王永恩  在本刊中的所有文章
杨旭东  在本刊中的所有文章

参考文献:
[1] 李伟伟. 面向叶轮机气动形状精细设计的伴随方法及其应用研究[D]. 北京:中国科学院大学, 2013 LI Weiwei. Turbomachinery aerodynamic shape optimization approach using adjoint method and its applications for blade detail design[D]. Beijing:University of Chinese Academy of Sciences, 2013(in Chinese)
[2] 李静. 高性能飞行器气动外形设计方法研究与应用[D]. 西安:西北工业大学, 2014 LI Jing. The research and application of aerodynamic shape design method for high performance aircraft[D]. Xi'an:Northwestern Polytechnical University, 2014(in Chinese)
[3] 徐圣冠. 基于Kriging代理模型的气动外形优化方法研究[D]. 南京:南京航空航天大学, 2012 XU Shengguan. A study of aerodynamic shape optimization based on Kriging surrogate models[M]. Nanjing:Nanjing University of Aerodynamics and Astronautics, 2012(in Chinese)
[4] 于广元. 基于自由变形技术的伴随方法优化设计大曲率扩压通道[M]. 南京:南京航空航天大学, 2014 YU Guangyuan. Aerodynamic design of large curvature diffuser channel by using adjoint method based on FFD technique[M]. Nanjing:Nanjing University of Aerodynamics and Astronautics, 2014(in Chinese)
[5] JAMESON A. Aerodynamic design via control theory[J]. Journal of Scientific Computing, 1988(3):233-260
[6] KIM S, ALONSO J J, JAMESON A. A gradient accuracy study for the adjoin-based Navier-Stokes design method[R]. AIAA-1999-16201
[7] NADARAJAH S, JAMESON A. Studies of the continuous and discrete adjoint approaches to viscous automatic aerodynamic shape optimization[R], AIAA-2001-2530
[8] JAMESON A. Efficient aerodynamic shape optimization[R]. AIAA-2004-4396
[9] KIM S, ALONSO J J, JAMESON A. Multi-element high-lift configuration design optimization using viscous continuous adjoint method[J]. Journal of Aircraft, 2004, 41(5):1083-1096
[10] JAMESON A, MARTINELLI L, CLIFF S, et al. Aerodynamic shape optimization of transonic and supersonic aircraft configurations[R]. AIAA-2005-1013
[11] LYU Z, MARTINS J R R A. Aerodynamic design optimization studies of a blended-wing-body aircraft[J]. Journal of Aircraft, 2014, 51(5):1604-1617
[12] 杨旭东. 基于控制理论的气动优化设计技术研究[D]. 西安:西北工业大学, 2002 YANG Xudong. Aerodynamic optimization method research based on control theory[D]. Xi'an:Northwestern Polytechnical University, 2002(in Chinese)
[13] 熊俊涛. 基于伴随方法和Navier-Stokes方程的气动优化技术[D]. 西安:西北工业大学, 2007 XIONG Juntao. Aerodynamic shape optimization design based on adjoint approach using Navier-Stokes equations[D]. Xi'an:Northwestern Polytechnical University, 2007(in Chinese)
[14] 刘晓冬,杨旭东. 基于伴随方法的机翼多设计点气动反设计方法[J]. 航空计算技术, 2012, 42(5):60-64 LIU Xiaodong, YANG Xudong. Multi-point aerodynamic inverse design method of wing based on adjoint method[J]. Aeronautical Computing Technique, 2012, 42(5):60-64(in Chinese)
[15] 丰镇平,厉海涛,宋立明,等. 基于控制理论的透平叶栅气动反设计优化[J]. 中国科学:科学与技术, 2013, 43(3):257-273 FENG Zhenping, LI Haitao, SONG Liming, et al. Aerodynamic inverse design optimization for turbine cascades based on control theory[J]. Scientia Sinca Technologica, 2013, 43(3):257-273(in Chinese)
[16] 白俊强,雷锐午,杨体浩, 等. 基于伴随理论的大型客机气动优化设计研究进展[J]. 航空学报,2019,40(1):522642 BAI Junqiang, LEI Ruiwu, YANG Tihao, et al. Progress of adjoint-based aerodynamic optimization design for large civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522642(in Chinese)
[17] 刘少伟,白俊强,余培汛, 等. 考虑声爆特性的超声速客机气动优化设计[J]. 西北工业大学学报,2020,38(2):271-278 LIU Shaowei, BAI Junqiang, YU Peixun, et al. Aerodynamic optimization design on supersonic transports considering sonic boom intensity[J]. Journal of Northwestern Polytechnical University,2020,38(2):271-278(in Chinese)
[18] 王虎峰,白俊强. 飞翼布局气动设计要点研究[J]. 科学技术与工程, 2009, 9(12):1671-1819 WANG Hufeng, BAI Junqiang. Design essentials research of the flying-wing configuration[J]. Science Technology and Engineering, 2009, 9(12):1671-1819(in Chinese)
相关文献:
1.刘少伟, 白俊强, 余培汛, 陈保, 周伯霄.考虑声爆特性的超声速客机气动优化设计[J]. 西北工业大学学报, 2020,38(2): 271-278
2.夏露, 张欣, 杨梅花, 米百刚.飞翼布局翼型气动隐身综合设计[J]. 西北工业大学学报, 2017,35(5): 821-826
3.李立, 白俊强, 郭同彪, 傅子元, 陈颂.基于伴随方法的超声速客机机翼气动优化设计[J]. 西北工业大学学报, 2017,35(5): 843-849