论文:2021,Vol:39,Issue(2):359-366
引用本文:
孙笑云, 江驹, 甄子洋, 魏若楠. 舰载飞机自适应模糊直接力着舰控制[J]. 西北工业大学学报
SUN Xiaoyun, JIANG Ju, ZHEN Ziyang, WEI Ruonan. Adaptive fuzzy direct lift control of aircraft carrier-based landing[J]. Northwestern polytechnical university

舰载飞机自适应模糊直接力着舰控制
孙笑云, 江驹, 甄子洋, 魏若楠
南京航空航天大学 自动化学院, 江苏 南京 211106
摘要:
考虑到舰载飞机精密着舰控制需求,针对舰载飞机着舰实际状态模型存在的强时变性、参数不确定性及复杂环境干扰,提出一种基于自适应模糊控制方法的舰载飞机着舰控制系统。调用襟翼通道控制权限,将所提方法应用于襟翼通道实现直接升力控制,并利用模糊系统逼近难以精确描述的舰载飞机六自由度非线性系统模型,实现着舰下滑道的精确跟踪,提高着舰精度。采用李雅普诺夫方法判定所提自适应模糊控制系统的稳定性,考虑舰艉流及甲板运动干扰,模拟舰载飞机着舰仿真环境,利用matlab仿真软件对构造的舰载飞机直接升力着舰控制系统进行数值仿真,并引入蒙特卡洛随机试验方法分别对常规控制方案及自适应模糊直接力控制方案进行着舰点精度统计试验。通过响应曲线及着舰点统计结果证实所提直接力控制方案具有更好的控制效果,相比常规控制方案提升了着舰精确性。
关键词:    舰载飞机着舰    直接力控制    自适应控制    模糊控制    着舰控制   
Adaptive fuzzy direct lift control of aircraft carrier-based landing
SUN Xiaoyun, JIANG Ju, ZHEN Ziyang, WEI Ruonan
College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
Abstract:
Considering the precise landing demand for carrier-based aircraft flight control, this paper proposes an adaptive fuzzy landing control method for the strong time-varying, parameter uncertainty and various complex coupling in the actual state aircraft model. This method is applied to the flap channel to achieve direct lift control, and the fuzzy system is utilized to approximate the six-degree-of-freedom nonlinear system model of a carrier aircraft that is difficult to accurately describe, to achieve accurate tracking of the landing glideslope, and improve the landing accuracy. Lyapunov method was used to judge the stability of the adaptive fuzzy control algorithm. During the simulation, the airwake and deck motion disturbance were introduced to simulate the landing environment of the aircraft. The effectiveness of the landing control system was verified by the Matlab software. Monte-Carlo random test was utilized to carry out the landing point accuracy for the conventional control scheme and the adaptive fuzzy direct lift control scheme respectively. Through the response curve and landing point statistical results, it is confirmed that the direct lift control scheme has better control effect, and the landing precision has improvement compared with the conventional control scheme.
Key words:    carrier-based aircraft landing    direct lift control    adaptive control    fuzzy control    carrier-based landing control   
收稿日期: 2020-06-28     修回日期:
DOI: 10.1051/jnwpu/20213920359
基金项目: 国家自然科学基金(61673209,71971115)资助
通讯作者: 江驹(1963-),南京航空航天大学教授、博士生导师,主要从事飞行器先进导航、制导与控制研究。e-mail:jiangju@nuaa.edu.cn     Email:jiangju@nuaa.edu.cn
作者简介: 孙笑云(1995-),南京航空航天大学硕士研究生,主要从事舰载飞机着舰控制与容错控制研究。
相关功能
PDF(1695KB) Free
打印本文
把本文推荐给朋友
作者相关文章
孙笑云  在本刊中的所有文章
江驹  在本刊中的所有文章
甄子洋  在本刊中的所有文章
魏若楠  在本刊中的所有文章

参考文献:
[1] RAVI J, ABHISHEK S, SWATI S. Adaptive longitudinal control of UAVS with direct lift control[C]//Optimization of Dynamical Systems, 2016
[2] RONALD H. Analysis of the aircraft carrier landing task, pilot plus augmentation/automation[C]//2nd IFAC Conference on Cyber-Physical and Human-Systems, 2019
[3] JAMES W. Project magic carpet:advanced controls and displays for precision carrier landings[C]//54th AIAA Aerospace Sciences Meeting, 2016
[4] ZHEN Ziyang, TAO Gang, JIANG Shuoying. An adaptive control scheme for carrier landing of UAV[C]//37th Chinese Control Conference, Wuhan, 2018
[5] DOU Rui, DUAN Haibin. Lévy flight based pigeon-inspired optimization for control parameters optimization in automatic carrier landing system[J]. Aerospace Science and Technology, 2017, 61:11-20
[6] ZHEN Ziyang, PENG Miao, XUE Yixuan. Robust preview control and autoregressive prediction for aircraft automatic carrier landing[J]. IEEE Access, 2019, 7:273-283
[7] ZHEN Ziyang, TAO Gang, YU Chaojun. A multivariable adaptive control scheme for automatic carrier landing of UAV[J]. Aerospace Science and Technology, 2019, 92:714-721
[8] YOO B K, Ham W C. Adaptive control of robot manipulator using fuzzy compensator[J]. IEEE Trans on Fuzzy Systems, 2000, 8(2):186-199
[9] ZHEN Ziyang, JIANG Shuoying. Automatic carrier landing control for unmanned aerial vehicles based on preview control and particle filtering[J]. Aerospace Science and Technology, 2018, 81:99-107
[10] BRADFORD E G, DAVID B F. CFD analysis of the F/A-18E super hornet during aircraft carrier landing high-lift aerodynamic conditions[C]//54th AIAA Aerospace Sciences Meeting, 2016
[11] ZHEN Ziyang, YU Chaojun, JIANG Shuoying. Adaptive super-twisting control for automatic carrier landing of aircraft[J]. IEEE Trans on Aerospace and Electronic Systems, 2019, 56(2):984-997
[12] ZHEN Ziyang, JIANG Ju, WANG Xinhua. Modeling, control design, and influence analysis of catapult-assisted take-off process for carrier-based aircrafts[J]. Journal of Aerospace Engineering, 2018, 232(13):2527-2540
[13] ZHEN Ziyang, JIANG Shuoying, JIANG Ju. Preview control and particle filtering for automatic carrier landing[J]. IEEE Trans on Aerospace and Electronic Systems, 2018, 54(6):2662-2674
[14] ZHEN Ziyang, JIANG Ju, WANG Xinhua. Information fusion based optimal attitude control for large civil aircraft system[J]. ISA Transactions, 2015, 55:81-91
相关文献:
1.杨立本, 章卫国, 黄得刚, 车军.欠驱动四旋翼飞行器反演模糊自适应控制[J]. 西北工业大学学报, 2015,33(3): 495-499
2.雷金莉, 窦满峰.基于RBF网络补偿的近空间用BLDCM自适应模糊控制[J]. 西北工业大学学报, 2014,32(3): 394-399