论文:2021,Vol:39,Issue(2):258-266
引用本文:
彭远生, 代洪华, 张皓, 岳晓奎. 仿生抗冲击Stewart隔振平台的动力学与控制[J]. 西北工业大学学报
PENG Yuansheng, DAI Honghua, ZHANG Hao, YUE Xiaokui. Dynamics and control of a bio-inspired Stewart platform[J]. Northwestern polytechnical university

仿生抗冲击Stewart隔振平台的动力学与控制
彭远生1,2, 代洪华1,2, 张皓3, 岳晓奎1,2
1. 西北工业大学 航天学院, 陕西 西安 710072;
2. 航天飞行动力学技术重点实验室, 陕西 西安 710072;
3. 中国科学院 空间应用工程与技术中心, 北京 100094
摘要:
空间非合作目标柔顺抓捕过程中伴随有碰撞、强冲击等问题,因此必须设计具有高效隔振性能的隔振系统。设计了基于仿生抗冲击结构的Stewart隔振平台,通过隔振平台的仿生抗冲击特性实现抓捕过程中服务航天器的隔振保护。隔振平台的理论动力学建模以拉格朗日动力学方程为基础,借助ADAMS软件验证了理论建模的正确性。仿真对比发现,设计的隔振平台的被动隔振性能优于基于线性弹簧阻尼隔振器的Stewart隔振平台。进一步研究了隔振平台参数对隔振性能的影响。采用反馈线性化的控制方法对隔振平台进行主动隔振控制,克服了被动隔振的速度漂移问题。研究表明设计的新型隔振平台具有优良的隔振性能,为非合作目标柔顺抓捕中的隔振系统选择提供了有效参考。
关键词:    仿生抗冲击结构    非合作目标柔顺抓捕    主被动隔振    Stewart平台    动力学    ADAMS    仿真    反馈线性化   
Dynamics and control of a bio-inspired Stewart platform
PENG Yuansheng1,2, DAI Honghua1,2, ZHANG Hao3, YUE Xiaokui1,2
1. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. National Key Laboratory of Aerospace Flight Dynamics, Xi'an 710072, China;
3. Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing 100094, China
Abstract:
Collision and strong impacts take place in mission of the on orbit capture of non-cooperative spacecraft. So, it is necessary to design a vibration isolation system with efficient vibration isolation performance. A Stewart vibration isolation platform based on the bio-inspired isolation system is proposed in this paper. The characteristics of the novel bio-inspired Stewart platform realizes the vibration isolation protection of the serving spacecraft during the capture mission. The dynamic model of the vibration isolation platform is established by Lagrange's equations. The fidelity of the established dynamic model is verified via a comparison of the theoretical simulation and the ADAMS simulation. Comparisons between the presently proposed vibration isolation platform and the traditional spring-mass-damper type Stewart vibration isolation platform demonstrates the advantages of the present platform. The effects of system parameters on the isolation performance of the present platform are thoroughly investigated. The feedback linearization control method is used to control the present platform which overcomes the drift motion that occurs in the passive isolation case. The results show that the novel bio-inspired Stewart platform has excellent vibration isolation performance, which provides a promising way for the vibration isolation of the non-orbit capture mission.
Key words:    bio-inspired isolation system    non-cooperative target compliant capture    active-passive vibration isolation    Stewart platform    dynamics    ADAMS    simulation    feedback linearization   
收稿日期: 2020-06-19     修回日期:
DOI: 10.1051/jnwpu/20213920258
通讯作者: 代洪华(1986-),西北工业大学教授,主要从事航天器动力学与控制研究。     Email:hhdai@nwpu.edu.cn
作者简介: 彭远生(1996-),西北工业大学硕士研究生,主要从事航天器动力学建模与控制研究。
相关功能
PDF(2163KB) Free
打印本文
把本文推荐给朋友
作者相关文章
彭远生  在本刊中的所有文章
代洪华  在本刊中的所有文章
张皓  在本刊中的所有文章
岳晓奎  在本刊中的所有文章

参考文献:
[1] MARK C P, KAMATH S. Review of active space debris removal methods[J]. Space Policy, 2019, 47:194-206
[2] 孙冲, 万文娅, 崔尧, 等. 扁平体空间非合作目标多指外包络抓捕构型设计[J]. 中国空间科学技术, 2019, 39(6):8-20 SUN Chong, WAN Wenya, CUI Yao, et al. Optimal caging configuration design for flat non-cooperative target capture based on multi-fingered mechanism[J]. Chinese Space Science and Technology, 2019, 39(6):8-20(in Chinese)
[3] 豆博, 岳晓奎. 考虑摩擦的空间抓捕过程碰撞动力学分析与控制[J]. 中国空间科学技术, 2018, 38(1):54-62 DOU Bo, YUE Xiaokui. Contact dynamics analysis and control of space capture considering friction[J]. Chinese Space Science and Technology, 2018, 38(1):54-62(in Chinese)
[4] LUO J J, WEI C S, DAI H H, et al. Robust inertia-free attitude takeover control of post-capture combined spacecraft with guaranteed prescribed performance[J]. ISA Transactions, 2018, 74:28-44
[5] PARK W H. Mass-spring-damper response to repetitive impact[J]. Journal of Engineering for Industry, 1967, 89(4):587-596
[6] CARRELLA A, BRENNAN M J, WATERS T P. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic[J]. Journal of Sound & Vibration, 2007, 301(3/4/5):678-689
[7] CARRELLA A, BRENNAN M J, KOVACIC I, et al. On the force transmissibility of a vibration isolator with quasi-zero-stiffness[J]. Journal of Sound & Vibration, 2009, 322(4/5):707-717
[8] ZHENG Y S, ZHANG X N, LUO Y J, et al. Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness[J]. Mechanical Systems and Signal Processing, 2018, 100:135-151
[9] ZHENG Y S, ZHANG X N, LUO Y J, et al. Design and experiment of a high-static-low-dynamic stiffness isolator using a negative stiffness magnetic spring[J]. Journal of Sound and Vibration, 2016, 360:31-52
[10] CAO Q J, HAN Y W, LIANG T W, et al. Multiple buckling and codimension-three bifurcation phenomena of a nonlinear oscillator[J]. International Journal of Bifurcation and Chaos, 2014, 24(1):1430005
[11] DAI H H, WANG X C, SCHNOOR M, et al. Analysis of internal resonance in a two-degree-of-freedom nonlinear dynamical system[J]. Communications in Nonlinear Science and Numerical Simulation, 2017, 49:176-191
[12] DAI H H, JING X J, WANG Y, et al. Post-capture vibration suppression of spacecraft via a bio-inspired isolation system[J]. Mechanical Systems and Signal Processing, 2018, 105:214-240
[13] 王超新, 刘兴天, 张志谊. 基于立方体Stewart的微振动主动控制分析与实验[J]. 振动与冲击, 2017, 36(5):208-213 WANG Chaoxin, LIU Xingtian, ZHANG Zhiyi. Micro-vibration active control for a Stewart platform with a cubic configuration[J]. Journal of Vibration and Shock, 2017, 36(5):208-213(in Chinese)
[14] Wu Z, JING X J, SUN B, et al. A 6 DOF passive vibration isolator using x-shape supporting structures[J]. Journal of Sound and Vibration, 2016, 380:90-111
[15] 杨小龙. 六自由度并联机器人运动学,动力学与主动振动控制研究[D]. 南京:南京航空航天大学, 2018 YANG Xiaolong. Research on kinematics, dynamics and active vibration control of six-DOF parallel robots[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018(in Chinese)
[16] YIN X X, PAN L. Direct adaptive robust tracking control for 6 DOF industrial robot with enhanced accuracy[J]. ISA Transactions, 2017, 72:178-184
相关文献:
1.张博文, 黄铁球, 邢琰, 滕宝毅.星球车导航与动力学联合仿真平台设计研究[J]. 西北工业大学学报, 2019,37(6): 1184-1190
2.陈熠, 崔荣耀, 巨荣博, 豆清波.考虑机体动力特性的前起落架摆振分析[J]. 西北工业大学学报, 2018,36(2): 388-395
3.陈熠, 刘冲冲, 牟让科.舰载机舰面操纵转弯特性动力学建模与分析[J]. 西北工业大学学报, 2017,35(6): 1089-1095
4.徐小野, 伊始克夫·谢尔盖, 法捷严科夫·巴维尔, 王长青.通过空间系绳系统返回载荷到地面的误差分析[J]. 西北工业大学学报, 2016,34(2): 294-298
5.贾晓娟, 闫晓东.吸气式组合动力飞行器爬升轨迹设计方法研究[J]. 西北工业大学学报, 2015,33(1): 104-109
6.卢伟, 马晓平, 周明, 杨会涛.无人机气动弹射动力学仿真与优化[J]. 西北工业大学学报, 2014,32(6): 865-871
7.王鑫, 袁晓光, 杨星.基于拉格朗日方法的飞行器多体分离姿态动力学分析研究[J]. 西北工业大学学报, 2014,32(1): 18-22
8.高登巍, 罗建军, 马卫华.基于Lyapunov方法的非合作目标接近与视线跟踪[J]. 西北工业大学学报, 2013,31(4): 577-583