论文:2021,Vol:39,Issue(2):241-248
引用本文:
杨佳佳, 贺尔铭, 舒俊成. 自适应模糊控制在抑制海上漂浮式风力机振动响应中的应用[J]. 西北工业大学学报
YANG Jiajia, HE Erming, SHU Juncheng. Application of adaptive fuzzy control to suppression vibration response of floating offshore wind turbine[J]. Northwestern polytechnical university

自适应模糊控制在抑制海上漂浮式风力机振动响应中的应用
杨佳佳, 贺尔铭, 舒俊成
西北工业大学 航空学院, 陕西 西安 710072
摘要:
海上漂浮式风力机是一个复杂的刚-柔耦合非线性系统,难以建立其精确的动力学模型,无法利用常规控制方式提高风力机的抗风浪干扰能力。为解决此问题,采用自适应模糊控制器(AFC)抑制漂浮式风力机的动力响应。引入2个修正因子对模糊规则进行优选,得到了传统模糊控制器(FC);为应对漂浮式风力机工作过程中平衡位置变化和结构参数摄动情况,在FC基础上增加了自适应模块,设计了一种AFC,并对其有效性进行了验证;在随机风浪扰动和叶片桨距控制系统耦合作用下,研究了不同控制策略对海上漂浮式风力机振动响应的抑制效果。仿真结果表明,目标值改变时,AFC对目标值的跟踪能力明显优于FC;随机风浪扰动作用下,相对于被动控制策略,AFC对平台俯仰(PFPI)运动功率谱密度(PSD)峰值的抑制效果可提高39%。
关键词:    海上漂浮式风力机    振动抑制    修正因子    模糊规则    自适应模糊控制   
Application of adaptive fuzzy control to suppression vibration response of floating offshore wind turbine
YANG Jiajia, HE Erming, SHU Juncheng
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Floating offshore wind turbine is a complex rigid-flexible coupling nonlinear system, and the accurate dynamic model is difficultly established. Therefore, the wind-wave interference cannot be improved by adopting the conventional control strategy. In order to solve this problem, an adaptive fuzzy controller (AFC) is used to suppress the dynamic response of floating wind turbine. Two correction factors are introduced to optimize the fuzzy rule, and the traditional fuzzy controller (FC) is firstly obtained. Since the balance positions change and structural parameter perturbation of the wind turbine, an AFC is designed and validated. Finally, the suppression vibration responses ability of floating offshore wind turbine by using the different control strategies is studied under the random wind-wave disturbance and blade pitch control system coupling effect. The simulation results show that the tracking ability of the AFC to the target value is obviously higher than that of the FC; Comparing with the passive control strategy, the suppression vibration effect on the power spectral density (PSD) of the platform pitch (PFPI) motion peak can increase by 39.06% by adopting the AFC.
Key words:    floating offshore wind turbine    vibration suppression    correction factor    fuzzy rule    adaptive fuzzy control   
收稿日期: 2020-10-02     修回日期:
DOI: 10.1051/jnwpu/20213920241
基金项目: 国家自然科学基金(51675426)资助
通讯作者:     Email:
作者简介: 杨佳佳(1989-),西北工业大学博士研究生,主要从事结构动力学与振动控制研究。
相关功能
PDF(2479KB) Free
打印本文
把本文推荐给朋友
作者相关文章
杨佳佳  在本刊中的所有文章
贺尔铭  在本刊中的所有文章
舒俊成  在本刊中的所有文章

参考文献:
[1] KALDELLIS J K, KAPSALI M, KATSANOU E. Renewable energy applications in Greece-what is the public attitude?[J]. Energy Policy, 2012, 42:37-48
[2] LACKNER M A, ROTEA M A. Passive structural control of offshore wind turbines[J]. Wind energy, 2011, 14(3):373-388
[3] JIN X, XIE S, HE J, et al. Optimization of tuned mass damper parameters for floating wind turbines by using the artificial fish swarm algorithm[J]. Ocean engineering, 2018, 167:130-141
[4] HE J, JIN X, XIE S, et al. Multi-body dynamics modeling and TMD optimization based on the improved AFSA for floating wind turbines[J]. Renewable Energy, 2019, 141:305-321
[5] ZHANG Z L. Optimal tuning of the tuned mass damper(TMD) for rotating wind turbine blades[J]. Engineering Structures, 2020, 207:110209
[6] JAHANGIRI V, SUN C. Three-dimensional vibration control of offshore floating wind turbines using multiple tuned mass dampers[J]. Ocean Engineering, 2020, 206:107196
[7] HORACIO C E, JOHN C R, SERGIO A. Rejection of varying-frequency periodic load disturbances in wind-turbines through active disturbance rejection-based control[J]. Renewable Energy, 2019, 141:217-235
[8] JAIME L, WAI H L, ALBERT M U, et al. Active tip deflection control for wind turbines[J]. Renewable Energy, 2020, 149:445-454
[9] FITZGERALD B, SARKAR S, STAINO A. Improved reliability of wind turbine towers with active tuned mass dampers (ATMDs)[J]. Journal of Sound and Vibration, 2018, 419:103-122
[10] HU Y,HE E,ZHANG Y. Optimization design of TMD for vibration suppression of offshore floating wind turbine[J]. International Journal of Plant Engineering and Management, 2015, 1(20):13-27
[11] 贺尔铭, 张扬, 胡亚琪. 3种典型海上浮动式风机动力学特性比较分析[J]. 太阳能学报, 2015, 36(12):2874-2881 HE Erming, ZHANG Yang, HU Yaqi. Comparison and analysis of dynamic characteristics of three typical floating wind turbines[J]. Acta Energiae Solaris Sinica, 2015, 36(12):2874-2881(in Chinese)
[12] 杨佳佳, 贺尔铭, 胡亚琪. 浮动平台内TMD对Barge式海上浮动风机的振动抑制研究[J]. 西北工业大学学报, 2018, 36(2):238-245 YANG Jiajia, HE Erming, HU Yaqi. Vibration mitigation of the Barge-type offshore wind turbine with a tuned mass damper on floating platform[J]. Journal of Northwestern Polytechnical University, 2018, 36(2):238-245(in Chinese)
[13] HU Y Q, HE E M. Active structural control of a floating wind turbine with a stroke-limited hybrid mass damper[J]. Journal of Sound and Vibration, 2017, 410:447-472
[14] YANG J J, HE E M. Coupled modeling and structural vibration control for floating offshore wind turbine[J]. Renewable Energy, 2020, 157:678-694
[15] 刘国荣, 万百五. 一类非线性MIMO系统的直接自适应模糊鲁棒控制[J]. 控制理论与应用, 2002, 19(5):693-698 LIU Guorong, WAN Baiwu. Direct adaptive fuzzy robust control for a class of nonlinear MIMO systems[J]. Control Theory and Applications, 2002, 19(5):693-698(in Chinese)