论文:2021,Vol:39,Issue(1):9-16
引用本文:
何宇鑫, 马玉娥, 曹瑞. 复杂应力下TC11蠕变损伤及裂纹扩展研究[J]. 西北工业大学学报
HE Yuxin, MA Yu'e, CAO Rui. Study on creep damage and crack growth for TC11 under complex stress loading[J]. Northwestern polytechnical university

复杂应力下TC11蠕变损伤及裂纹扩展研究
何宇鑫, 马玉娥, 曹瑞
西北工业大学 航空学院, 陕西 西安 710072
摘要:
为探究TC11材料的蠕变损伤和蠕变裂纹扩展特性,以500℃下TC11的单轴蠕变试验为参考,基于考虑孔洞长大的延性耗竭蠕变损伤本构关系,建立有限元模型,研究了初始裂纹长度对CT试件裂纹扩展的影响以及初始裂纹尺寸对表面裂纹扩展的影响。研究表明:初始裂纹长度显著影响TC11材料CT试件的蠕变裂纹扩展行为,其值越大裂纹扩展速率、裂尖等效应力、裂尖应力三轴度越大,且初始裂纹长度对深裂纹试样(a0/W=0.6,a0/W=0.7)裂纹扩展特性的影响明显大于对浅裂纹试样(a0/W=0.3,a0/W=0.4,a0/W=0.5)的影响;当表面裂纹最深处的应力强度因子Kπ/2相同时,各试件在同一时刻深度方向的扩展量近似为长度方向扩展量的2倍,随着初始裂纹尺寸的增大,表面裂纹的扩展速率逐渐减慢,且初始裂纹长度对裂纹扩展的影响要大于初始裂纹深度对裂纹扩展的影响。
关键词:    蠕变本构模型    应力三轴度    蠕变损伤    裂纹扩展    有限元分析   
Study on creep damage and crack growth for TC11 under complex stress loading
HE Yuxin, MA Yu'e, CAO Rui
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
In order to investigate the creep damage and creep crack growth of TC11, we established the finite element model based on ductility exhaustion constitutive model. This paper uses the uniaxial creep test of TC11 at 500℃ as a reference and studies the effect of initial crack dimensions on crack growth of CT specimen and surface crack specimen. The initial crack length of CT specimen has a significant effect on creep crack growth of TC11 material. The larger the initial crack length, the higher the crack growth rate, the crack tip equivalent stress and the crack tip stress triaxiality. The initial crack length has a greater influence on creep crack growth for deep crack specimens(a0/W=0.6,a0/W=0.7) than that for shallow crack specimens(a0/W=0.3,a0/W=0.4,a0/W=0.5). When the stress intensity factor Kπ/2 at the deepest location of surface crack is the same, the crack growth length of each specimen in the depth direction at the same time is approximately twice as much as that in the length direction. With the increase of initial crack size, the crack growth rate of surface crack decreases gradually. And the effect of initial crack length on crack growth is greater than that of initial crack depth.
Key words:    creep constitutive model    stress triaxiality    creep damage    crack growth    finite element analysis   
收稿日期: 2020-06-23     修回日期:
DOI: 10.1051/jnwpu/20213910009
基金项目: 国家自然科学基金(919860128)资助
通讯作者:     Email:
作者简介: 何宇鑫(1992-),西北工业大学博士研究生,主要从事高温疲劳和蠕变断裂研究。
相关功能
PDF(2611KB) Free
打印本文
把本文推荐给朋友
作者相关文章
何宇鑫  在本刊中的所有文章
马玉娥  在本刊中的所有文章
曹瑞  在本刊中的所有文章

参考文献:
[1] 涂善东. 高温结构完整性原理[M]. 北京: 科学出版社, 2003 TU Shandong. High temperature structural integrity[M]. Beijing: Science Press, 2003(in Chinese)
[2] SINGH G, SATYANARAYANA D V V, et al. Upadrasta ramamurty enhancement in creep resistance of Ti-6Al-4V alloy due to boron addition[J]. Materials Science & Engineering A, 2014(597): 194-203
[3] ADRIANO Gonçalves dos Reis, DANIELI aparecida pereira reis, CARLOS de moura neto, et al. Creep behavior study at 500℃ of laser nitrided Ti-6Al-4V alloy[J]. Journal of materials research and Technology, 2013, 2(1): 48-51
[4] 马晓健. 短寿命发动机结构高温强度分析方法研究[D]. 南京: 南京航空航天大学, 2012 MA Xiaojian. Research on life predition methods for high temperature components in short life turbine engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012(in Chinese)
[5] XIANG Yanxun, ZHU Wujun, LIU Changjun, et al. Creep degradation characterization of titanium alloy using nonlinear ultrasonic technique[J]. NDT & E International, 2015(72): 41-49
[6] HYDE C J, HYDE T H, SUN W, et al. Damage mechanics based predictions of creep crack growth in 316 stainless steel[J]. Engineering Fracture Mechanics, 2010(77): 2385-2420
[7] ZHANG Yucai, JIANG Wenchun, TU Shantung, et al. Creep crack growth behavior analysis of the 9Cr-1Mo steel by a modified creep-damage model[J]. Materials Science & Engineering A, 2017(708): 68-76
[8] HE J Z, WANG G Z, TU S T, et al. Characterization of 3-D creep constraint and creep crack growth rate in test specimens in ASTM-E1457 standard[J]. Engineering Fracture Mechanics, 2016(168): 131-146
[9] VENUGOPAL S, SASIKALA G, KUMAR Y. Creep crack growth behavior of a P91 steel weld[J]. Procedia Engineering, 2014(86): 662-668
[10] MA H S, WANG G Z, LIU S, et al. In-plane and out-of-plane unified constraint-dependent creep crack growth rate of 316H steel[J]. Engineering Fracture Mechanics, 2016(155): 88-101
[11] 胡晓安, 石多奇, 杨晓光, 等. TMF本构和寿命模型:从光棒到涡轮叶片[J]. 航空学报, 2019, 40(3): 422494 HU Xiaoan, SHI Duoqing, YANG Xiaoguang, et al. TMF constitutive and life modeling: from smooth specimen to turbine blade[J]. Acta Aeronautica et Astronautica Sinica, 201940(3): 422494(in Chinese)
[12] WEN Jianfeng, TU Shandong. A multiaxial creep-damage model for creep crack growth considering cavity growth and microcrack interaction[J]. Engineering Fracture Mechanics, 2014(123): 197-210
[13] HULL D, RIMMER D E. The growth of grain boundary voids under stress[J]. Philosophical Magazine, 1959(8): 26-34
[14] COCKS A C F, ASHBY M F. Intergranular fracture during power law creep under multi-axial stresses[J]. Met Sci, 1980(14): 395-402
[15] LING Xiang, TU Shantung, GONG Jianming. Application of Runge-Kutta-Merson agorithm for creep damage analysis[J]. International Journal of Pressure Vessels and Piping, 2000(77): 243-248