论文:2020,Vol:38,Issue(6):1322-1329
引用本文:
董玮, 何庆南, 梁武科, 魏清希, 董言, 孙健. 双蜗壳离心泵泵腔轴向宽度与流动特性的关系[J]. 西北工业大学学报
DONG Wei, HE Qingnan, LIANG Wuke, WEI Qingxi, DONG Yan, SUN Jian. Relationship between Axial Width and Flow Characteristics of Pump Chamber in Double Volute Centrifugal Pump[J]. Northwestern polytechnical university

双蜗壳离心泵泵腔轴向宽度与流动特性的关系
董玮1, 何庆南2, 梁武科2, 魏清希3, 董言1, 孙健1
1. 西北农林科技大学 水利与建筑工程学院, 陕西 杨凌 712100;
2. 西安理工大学 水利水电学院, 陕西 西安 710048;
3. 西安泵阀总厂有限公司, 陕西 西安 710025
摘要:
离心泵泵腔轴向宽度对泵腔液体流动特性具有较大影响,选取单级单吸半开式叶轮双蜗壳离心泵为研究对象,在6种不同泵腔轴向宽度条件下,对比分析泵腔压力场、速度场分布规律,得出泵腔压力在不同角度(0°,90°,180°,270°)沿径向变化特征,揭示泵腔压力与叶轮半径关联性,绘制切向速度、径向速度在不同角度沿轴向分布曲线。结果表明:当泵腔轴向宽度由23.9增大至43.9 mm时,同一径向位置的压力值逐渐增大,径向压差不断减小;同一泵腔轴向宽度下,压力均值沿径向近似呈抛物线且不断增加。不同角度方向的切向速度沿轴向分布差别较小,且湍流核心区无量纲切向速度均值随泵腔轴向宽度的增大逐渐由0.32减小到0.19;不同角度方向的径向速度沿轴向分布差别较大,0°和180°方向上存在涡流,但湍流核心区径向速度均值近似为0。该研究为离心泵水力设计、结构设计和准确计算轴向力提供了有力的依据。
关键词:    离心泵    泵腔    压力    切向速度    径向速度   
Relationship between Axial Width and Flow Characteristics of Pump Chamber in Double Volute Centrifugal Pump
DONG Wei1, HE Qingnan2, LIANG Wuke2, WEI Qingxi3, DONG Yan1, SUN Jian1
1. College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China;
2. Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an 710048, China;
3. Xi'an Pump & Valve Plant Co., Ltd, Xi'an 710025, China
Abstract:
The axial width of pump chamber has a great influence on the flow characteristics of the pump chamber in the centrifugal pump. A single-stage single-suction double volute centrifugal pump with a semi-open impeller was selected as the object. For the 6 different pump chamber axial width, it was concluded that the pump chamber pressure at the different angles (0°, 90°, 180°, 270°) along the radial variation characteristics according to the contrast analysis of the pump cavity pressure field, velocity field distribution. The correlation between the pump chamber pressure and the impeller radius was revealed. The tangential velocity and radial velocity along the axial distribution curves were draw. The results show that when the axial width of pump chamber increases from 23.9 mm to 43.9 mm, the pressure value of the same radial position increases gradually. The radial pressure difference is decreasing. At the same axial width of pump chamber, the pressure mean increases along the radial approximately parabola. The tangential velocity of different angular directions has little difference in axial distribution. The mean of dimensionless tangential velocity in the turbulent core area decreases from 0.32 to 0.19 with the increasing of pump chamber axial width. The radial velocity varies is greatly along the axial direction. There are eddies at the directions of 0ånd 180°, but the mean of radial velocity in the turbulent core area is about 0. This research provides the reference for centrifugal pump hydraulic design, structural design and the accurate calculation of axial force.
Key words:    centrifugal pump    pump chamber    pressure    tangential velocity    radial velocity   
收稿日期: 2020-01-07     修回日期:
DOI: 10.1051/jnwpu/20203861322
基金项目: 国家自然科学基金(52009114)、中央高校基本科研业务费专项(Z1090219041)、陕西省自然科学基础研究计划(2019JLM-58)与陕西省水利科技计划(2019slkj-15,2019slkj-10)资助
通讯作者:     Email:
作者简介: 董玮(1987-),西北农林科技大学讲师,主要从事流体机械流动理论、测试与控制研究。
相关功能
PDF(2685KB) Free
打印本文
把本文推荐给朋友
作者相关文章
董玮  在本刊中的所有文章
何庆南  在本刊中的所有文章
梁武科  在本刊中的所有文章
魏清希  在本刊中的所有文章
董言  在本刊中的所有文章
孙健  在本刊中的所有文章

参考文献:
[1] 关醒凡. 现代泵理论与设计[M]. 北京:中国宇航出版社, 2011:564-571 GUAN Xingfan. Modern Pump Theory and esign[M]. Beijing:China Aerospace Publishing House, 2011:564-571(in Chinese)
[2] 李伟, 施卫东, 蒋小平, 等. 多级离心泵轴向力的数值计算与试验研究[J]. 农业工程学报, 2012, 28(23):52-59 LI Wei, SHI Weidong, JIANG Xiaoping, et al. Numerical Calculation and Experimental Study of Axial Force on Multistage Centrifugal Pump[J]. Trans of the Chinese Society of Agricultural Engineering, 2012, 28(23):52-59(in Chinese)
[3] XIA B, KONG F Y, ZHANG H, et al. Investigation of Axial Thrust Deviation between the Theory and Experiment for High-Speed Mine Submersible Pump[J]. Advances in Mechanical Engineering, 2018, 10(8):1-13
[4] MORTAZAVI F, RIASI A, NOURBAKHSH A. Numerical Investigation of Back Vane Design and Its Impact on Pump Performance[J]. Journal of Fluids Engineering-Transactions of the ASME, 2017, 139(12):121104
[5] DONG W, CHU W L. Numerical Investigation of Fluid Flow Mechanism in the Back Shroud Cavity of a Centrifugal Pump[J]. Journal of Applied Fluid Mechanics, 2018, 11(3):709-719
[6] 刘瑞祥, 曹蕾, 张弋扬, 等. 考虑轴向间隙影响的挖泥泵轴向力数值分析[J]. 农业工程学报, 2014, 30(18):101-108 LIU Ruixiang, CAO Lei, ZHANG Yiyang, et al. Numerical Analysis of Axial Force on Dredging Pump Considering Influence of Axial Clearance[J]. Trans of the Chinese Society of Agricultural Engineering, 2014, 30(18):101-108(in Chinese)
[7] 刘在伦, 周金鑫, 陈小昌. 离心泵泵腔轴向间隙对平衡腔压力和泄漏量的影响[J]. 排灌机械工程学报, 2018, 36(12):1252-1257 LIU Zailun, ZHOU Jinxin, CHEN Xiaochang. Effects of Axial Gap of Impeller Side Cavity on Pressure and Leakage in Balance Chamberof Centrifugal Pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(12):1252-1257(in Chinese)
[8] 李仁年, 高杨, 程效锐,等. 螺旋离心泵叶轮背叶片对轴向力影响的数值分析[J]. 机械工程学报, 2012, 48(12):156-161 LI Rennian, GAO Yang, CHENG Xiaorui, et al. Numerical Calculation for Effects of Impeller Back Pump-Out Vanes on Axial Thrust in Screw Centrifugal Pump[J]. Journal of Mechanical Engineering, 2012, 48(12):156-161(in Chinese)
[9] WANG H, MU J G, SU M Y, et al. Simulation and Experimental Study on the Impact of Breadth of Back Blade on Axial Force Balance[J]. Applied Mechanics & Materials, 2012, 130/134(3):1568-1572
[10] 钱晨, 杨从新, 富友, 等. 平衡鼓宽度对首级叶轮前泵腔压力及多级泵轴向力的影响[J].农业工程学报, 2019, 35(2):33-39 QIAN Chen, YANG Congxin, FU You, et al. Influence of Balance Drum Clearance on Pressure of Front Cavity of First Stage Impeller and Axial Force of Multistage Pump[J]. Trans of the Chinese Society of Agricultural Engineering, 2019, 35(2):33-39(in Chinese)
[11] 杨从新, 强盼. 口环间隙对高速泵泵腔内流动特征的影响[J]. 排灌机械工程学报, 2017, 35(4):296-302 YANG Congxin, QIANG Pan. Effects of Wear-Rings Clearance on Flow Characteristic in Impeller Sidechamber of High-Speed Centrifugal Pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35(4):296-302(in Chinese)
[12] JIA X Q, CUI B L, ZHU Z C, et al. Numerical Investigation of Pressure Distribution in a Low Specific Speed Centrifugal Pump[J]. Journal of Thermal Science, 2018, 27(1):25-33
[13] 戴菡葳, 刘厚林, 丁剑, 等. 离心泵叶轮出口宽度对泵腔内压力脉动分布的影响[J]. 排灌机械工程学报, 2015, 33(1):20-25 DAI Hanwei, LIU Houlin, DING Jian, et al. Effects of Impeller Outlet Width on Pressure Pulsation in Two Side Chambers of Centrifugal Pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(1):20-25(in Chinese)
[14] 庞庆龙. 泵腔径向间隙对多级离心泵水力及噪声性能的影响[D]. 镇江:江苏大学, 2018 PANG Qinglong. Influence of Radial Clearance of Pump Chamber on Hydraulic and Noise Performance of Multistage Centrifugal Pump[D]. Zhenjiang:Jiangsu University, 2018(in Chinese)
[15] 王秀勇, 王灿星, 黎义斌. 离心泵泵腔内流动特征的数值分析[J]. 农业机械学报, 2009, 40(4):86-90 WANG Xiuyong, WANG Canxing, LI Yibin. Numerical Study of Flow Characteristics in the Impeller Side Chamber of Centrifugal Pump[J]. Trans of the Chinese Society for Agricultural Machinery, 2009, 40(4):86-90(in Chinese)
[16] 董玮, 楚武利. 离心泵叶轮平衡腔内液体流动特性及圆盘损失分析[J]. 农业机械学报, 2016, 47(4):29-35 DONG Wei, CHU Wuli. Analysis of Flow Characteristics and Disc Friction Loss in Balance Cavity of Centrifugal Pump Impeller[J]. Trans of the Chinese Society for Agricultural Machinery, 2016, 47(4):29-35(in Chinese)