论文:2020,Vol:38,Issue(6):1179-1187
引用本文:
寇思玮, 冯西安, 黄辉, 毕杨. 一种基于混响干扰稀疏重构的STAP方法[J]. 西北工业大学学报
KOU Siwei, FENG Xi'an, HUANG Hui, BI Yang. A Space-Time Adaptive Processing Method Based on Sparse Reconstruction of Reverberation Interference[J]. Northwestern polytechnical university

一种基于混响干扰稀疏重构的STAP方法
寇思玮, 冯西安, 黄辉, 毕杨
西北工业大学 航海学院, 陕西 西安 710072
摘要:
针对声呐空时自适应处理中混响样本获取及其协方差矩阵估计的难题,提出了一种基于混响稀疏重构的空时自适应处理方法。根据运动平台声呐混响在空时平面的分布规律,沿着混响单元多普勒频移与入射锥角余弦的关系曲线设计混响稀疏重构的空时导向字典;通过将声呐阵列观测数据在所设计的字典上进行稀疏分解,以较高精度重构了待检测距离单元中的混响样本;基于混响概率分布模型的先验信息,生成足够数量的混响样本以满足空时自适应处理中性能损失指标对混响样本数目的要求,从而得到混响协方差矩阵估计。该方法能够直接从待检测距离单元中重构混响样本,有效估计混响协方差矩阵,而不依赖于临近的辅助数据,因此不仅适合于混响统计特性不变的环境,也适合于统计特性变化的环境。声呐前视阵列、侧视阵列的仿真结果表明,该方法的改善因子比传统方法降低约10 dB,具有良好的抗混响性能。
关键词:    空时自适应处理    稀疏重构    混响样本    混响协方差矩阵   
A Space-Time Adaptive Processing Method Based on Sparse Reconstruction of Reverberation Interference
KOU Siwei, FENG Xi'an, HUANG Hui, BI Yang
School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Aiming at the problem of how to obtain reverberation samples and estimate their covariance matrix in the space-time adaptive processing(STAP) of sonar system, a new space-time adaptive processing method is proposed based on sparse reconstruction of reverberation in this paper. Firstly, according to the space-time distribution characteristics of reverberation received by moving platform sonar, a space-time steering dictionary for sparse reconstruction of reverberation is designed along the relation curve between Doppler frequency shift and incident cone angle cosine of the reverberation unit. Then, a reverberation sample in the rangecell under test (RUT) is reconstructed with high precision by sparse decomposition of signals obtained from the sonar array in the space-time steering dictionary. Finally, based on the prior information of reverberation probability distribution model, a sufficient number of reverberation samples are generated to meet the requirement of performance loss index on reverberation sample size in the space-time adaptive processing, so as to correctly obtain estimation of the covariance matrix of reverberation. This method can reconstruct the reverberation samples and estimate the reverberation covariance matrix directly from the data in RUT without relying on the auxiliary data from units adjacent to the RUT. Therefore, it is not only suitable for the environment with constant reverberation statistical characteristics, but also suitable for the environment with varying statistical characteristics. Simulation results of sonar forward-looking array and side-looking array indicate that the improvement factor of the proposed method is about 10dB lower than the traditional space-time adaptive processing method. So this new STAP method has good anti-reverberation performance.
Key words:    sonar system    space-time adaptive processing    sparse reconstruction    reverberation samples    reverberation covariance matrix    rangecell under test    simulation   
收稿日期: 2020-04-24     修回日期:
DOI: 10.1051/jnwpu/20203861179
基金项目: 国家自然科学基金(61671378)、陕西省自然科学基金(2019JM-568)与浙江省自然科学基金(LY20F030019)资助
通讯作者:     Email:
作者简介: 寇思玮(1989-),女,西北工业大学博士研究生,主要从事稀疏信号处理研究。
相关功能
PDF(2320KB) Free
打印本文
把本文推荐给朋友
作者相关文章
寇思玮  在本刊中的所有文章
冯西安  在本刊中的所有文章
黄辉  在本刊中的所有文章
毕杨  在本刊中的所有文章

参考文献:
[1] BRENNAN L E, REED I S. Theory of Adaptive Radar[J]. IEEE Trans on AES, 1973, 9(2):237-252
[2] KLEMM R. Detection of Slow Targets by a Moving Active Sonar[J]. Acoustic Signal Processing for Ocean Exploration, 1993, 388(5):165-170
[3] 詹昊可,蔡志明,苑秉成. 鱼雷声呐空时自适应混响抑制方法[J]. 武汉理工大学学报, 2007, 31(6):947-950 ZHAN Haoke, CAI Zhiming, YUAN Bingcheng. Space-Time Adaptive Reverberation Suppression in Active Sonar of Torpedo[J]. Journal of Wuhan University of Technology, 2007, 31(6):947-950(in Chinese)
[4] 赵申东, 周田宰, 沈建森. STAP抗混响辅助样本的选取方法[J]. 鱼雷技术, 2016, 24(6):417-421 ZHAO Shendong, ZHOU Tianzai, SHEN Jiansen. Selection of Auxiliary Samples for Reverberation Suppression via STAP[J]. Torpedo Technology, 2016, 24(6):417-421(in Chinese)
[5] 郝程鹏,施博,闫晟,等. 主动声纳混响抑制与目标检测技术[J]. 科技导报, 2017, 35(20):102-108 HAO Chengpeng, SHI Bo, YAN Sheng, et al. Reverberation Suppression and Target Detection for Active Sonar[J]. Science & Technology Review, 2017, 35(20):102-108(in Chinese)
[6] WEI M Y, SHI B, HAO C P, et al. A Novel Weak Target Detection Strategy for Moving Active Sonar[C]//2018 Oceans-MTS/IEEE Kobe Techno-Oceans, Japan, 2018
[7] REED I S, MALLETT J D, BRENNAN L E. Rapid Convergence Rate in Adaptive Arrays[J]. IEEE Trans on Aerospace and Electronic Systems, 1974, 10(6):853-863
[8] MALLAT S, ZHANG Z. Matching Pursuit with Time-Frequency Dictionaries[J]. IEEE Trans on Signal Processing, 1993, 41(12):3397-3415
[9] PATI Y C, REZAIIFAR R, KRISHNAPRASAD P S. Orthogonal Matching Pursuit:Recursive Function Approximation with Applications to Wavelet Decomposition[C]//Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, USA, 1993:1-5
[10] CHEN S S, DONOHO D L, SAUNDERS M A. Atomic Decomposition by Basis Pursuit[J]. SIAM Journal on Scientific Computing, 1998, 20(1):33-61
[11] CANDÉS E J. Compressive Sampling[C]//Proceedings of the International Congress of Mathematicians, 2006:1433-1452
[12] CANDÉS E J, ROMBERG J, TAO T. Robust Uncertainty Principles:Exact Signal Reconstruction from Highly Incomplete Frequency Information[J]. IEEE Trans on Information Theory, 2006, 52(2):489-509
[13] CANDÉS E J, TAO T. Near-Optimal Signal Recovery from Random Projections:Universal Encoding Strategies[J]. IEEE Trans on Information Theory, 2006, 52(12):5406-5425
[14] YANG Z C, DE LAMARE R C, LIU W J. Sparsity-Based STAP Using Alternating Direction Method with Gain/Phase Errors[J]. IEEE Trans on Aerospace and Electronic Systems, 2017, 53(6):2756-2768
[15] SUN Y Z, YANG X P, TENG L, et al. Robust Sparse Bayesian Learning STAP Method for Discrete Interference Suppression in Nonhomogeneous Clutter[C]//IEEE Radar Conference, USA, 2017:1003-1008
[16] FENG W K, GUO Y D, ZHANG Y S, et al. Airborne Radar Space Time Adaptive Processing Based on Atomic Norm Minimization[J]. Signal Processing, 2018, 148:31-40
[17] TUUK P B, MARPLE L. Compressed Sensing Radar Amid Noise and Clutter[C]//IEEE Asilomar Conference on Signals, Systems and Computers, USA, 2012:446-450
[18] YANG Z C, LI X, WANG H Q, et al. Adaptive Clutter Suppression Based on Iterative Adaptive Approach for Airborne Radar[J]. Signal Processing, 2013, 93(2):3567-3577
[19] GAO Z Q, TAO H H. Robust STAP Algorithm Based on Knowledge Aided SR for Airborne Radar[J]. IET Radar, Sonar & Navigation, 2017, 11(2):321-329
[20] LI Z H, ZHANG Y H, HE X Y, et al. Low-Complexity Off-Grid STAP Algorithm Based on Local Search Clutter Subspace Estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2018,15(12):1862-1866
[21] 阳召成, 黎湘, 王宏强. 基于空时功率谱稀疏性的空时自适应处理技术研究进展[J]. 电子学报, 2014, 42(6):1194-1204 YANG Zhaocheng, LI Xiang, WANG Hongqiang. An Overview of Space-Time Adaptive Processing Technology Based on Sparsity of Space-Time Power Spectrum[J]. Acta Electronica Sinica, 2014, 42(6):1194-1204(in Chinese)
[22] 段克清, 袁华东, 许红, 等. 稀疏恢复空时自适应处理技术研究综述[J]. 电子学报, 2019, 47(3):748-756 Duan Keqing, Yuan Huadong, Xu Hong, et al. An Overview on Sparse Recovery Space-Time Adaptive Processing Technique[J]. Acta Electronica Sinica, 2019, 47(3):748-756(in Chinese)