论文:2020,Vol:38,Issue(5):1047-1053
引用本文:
赵志彬, 谢逸夫, 刘志琪, 杨鹏飞, 薛小峰, 冷佳醒. 复合材料蜂窝结构渐进损伤评估及挖补修理研究[J]. 西北工业大学学报
ZHAO Zhibin, XIE Yifu, LIU Zhiqi, YANG Pengfei, XUE Xiaofeng, LENG Jiaxing. Study on Progressive Damage Assessment and Scarf Repair of Composite Honeycomb Structure[J]. Northwestern polytechnical university

复合材料蜂窝结构渐进损伤评估及挖补修理研究
赵志彬1, 谢逸夫2, 刘志琪2, 杨鹏飞3, 薛小峰2, 冷佳醒4
1. 西北工业大学 民航学院, 陕西 西安 710072;
2. 西北工业大学 航空学院, 陕西 西安 710072;
3. 中国飞机强度研究所 损伤检测与结构维修技术研究室, 陕西 西安 710065;
4. 上海微小卫星工程中心 导航技术研究所, 上海 201203
摘要:
复合材料蜂窝结构越来越广泛地应用于飞机承力结构件,其受冲击等损伤后的损伤评估与修理方案成为民机复材结构研究中最关切的问题之一。针对复合材料蜂窝结构渐进损伤评估及阶梯式胶接挖补修理问题,基于蜂窝芯子等效模型和C3D8R三维体单元及0厚度三维粘聚力单元COH3D8建立蜂窝结构渐进损伤分析和挖补修理参数研究的三维有限元模型;基于三维Hashin准则、Besant准则和B-K准则开发USDFLD程序实现复合材料层合板、蜂窝芯子和胶层的损伤模拟与失效;针对蜂窝结构穿孔损伤仿真研究补片挖补角度、额外层铺层角及厚度等参数对修理后结构强度恢复效果的影响规律。结果表明:补片挖补角度减小带来搭接处胶层内部剪应力升高,补片额外层铺层方向与外载荷夹角增大,以及额外层厚度增加导致搭接边缘出现应力集中而更易提前失稳,都会明显降低蜂窝结构挖补修理后的强度恢复效果。仿真分析结果表明挖补补片选取1层0°铺层的额外层和1∶10的挖补斜率时,蜂窝结构穿孔损伤修理件的强度恢复效果最佳,达到无损件的95.72%。
关键词:    复合材料蜂窝结构    渐进损伤评估    挖补修理    强度恢复效果    蜂窝芯子等效模型   
Study on Progressive Damage Assessment and Scarf Repair of Composite Honeycomb Structure
ZHAO Zhibin1, XIE Yifu2, LIU Zhiqi2, YANG Pengfei3, XUE Xiaofeng2, LENG Jiaxing4
1. School of Civil Aviation, Northwestern Polytechnical University, Xi'an 710072, China;
2. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
3. Damage Detection and Structural Maintenance Technology Lab, Aircraft Strength Research Institute of China, Xi'an 710065, China;
4. Institute of Navigation Technology, Shanghai Engineering Center for Microsatellites, Shanghai 201203, China
Abstract:
As the widely application of composite honeycomb structure in aircraft Structural Significant Items(SSI) and other structures, the damage assessment and repair scheme because of the impact and other damages have become one of the most concerned issues in the civil aircraft composite structures. In view of the progressive damage assessment of composite honeycomb structure and it's adhesively scarf repair parameter influence, the finite element model based on honeycomb core equivalent model and 3D solid units C3D8 and zero thickness cohesive force unit COH3D8 is established. A special USDFLD program is developed with FORTRAN for ABAQUAS using 3D Hashin criterion Besant criterion and B-K criterion to realize the damage simulation of composite panels, honeycomb cores and adhesive. The relationships between the structural strength recovery rate and the repair parameters such as patch oblique angle, extra layers layup angle and extra layers thickness are studied for the perforation injured honeycomb structure. The results show that the decrease in the patch oblique angle leading to an increase in the internal shear stress of the adhesive, the increase in the angle between the extra layers of the patch and the external load, and the increase in the thickness of the extra layers causing stress concentration and premature instability at the lap edge, will significantly reduce the strength recovery rate of the repaired honeycomb structure. The perfect patch form with 1∶10 cut oblique angle and only one extra layer of 0° layup angle is concluded, which achieves the optimal strength recovery effectiveness, reaching 95.72% of the non-damaged honeycomb structure.
Key words:    composite honeycomb structure    progressive damage assessment    adhesively scarf repair    strength recovery effectiveness    honeycomb core equivalent model   
收稿日期: 2020-01-20     修回日期:
DOI: 10.1051/jnwpu/20203851047
通讯作者:     Email:
作者简介: 赵志彬(1980-),西北工业大学讲师,主要从事民机结构强度设计、可靠性分析与适航技术研究。
相关功能
PDF(1601KB) Free
打印本文
把本文推荐给朋友
作者相关文章
赵志彬  在本刊中的所有文章
谢逸夫  在本刊中的所有文章
刘志琪  在本刊中的所有文章
杨鹏飞  在本刊中的所有文章
薛小峰  在本刊中的所有文章
冷佳醒  在本刊中的所有文章

参考文献:
[1] 刘岩松, 张子健, 宋晓晨, 等. 复合材料结构修理技术探究[J]. 航空维修与工程, 2018, 11:76-80 LIU Yansong, ZHANG Zijian, SONG Xiaochen, et al. Research on Repair Technology of Composite Material Structure[J]. Aviation Maintenance & Engineering, 2018, 11:76-80(in Chinese)
[2] AHN S H, SPRINGER G S. Repair of Composite Laminates[R]. DOT/FAA/AR-00/46, 2000
[3] LEI H, YAO K, WEN W, et al. Experimental and Numerical Investigation on the Crushing Behavior of Sandwich Composite under Edgewise Compression Loading[J]. Composites Part B:Engineering, 2016, 94:34-43
[4] WANG Z, LI Z, ZHOU W, et al. On the Influence of Structural Defects for Honeycomb Structure[J]. Composites Part B:Engineering, 2018, 142:183-192
[5] 王凯伦, 黎增山, 郭俊, 等. 薄蜂窝复合材料夹芯结构侧压性能研究[J]. 科学技术与工程, 2014, 14(34):111-116 WANG Kailun, LI Zengshan, GUO Jun, et al. Study of Thin-Core Honeycomb Sandwich Composite Structures' Behavior under Edgewise Compression[J]. Science Technology and Engineering, 2014, 14(34):111-116(in Chinese)
[6] 王轩, 曹阳丽, 邓云飞, 等. 平纹编织面板蜂窝夹芯结构侧压性能研究[J]. 玻璃钢/复合材料, 2018(8):5-11 WANG Xuan, CAO Yangli, DENG Yunfei, et al. Edgewise Compression Properties for Honeycomb Sandwich Structure with Plain Woven Faceplate[J]. Fiber Reinforced Plastics/Composites, 2018(8):5-11(in Chinese)
[7] AVERY J L, SANKAR B V. Compressive Failure of Sandwich Beams with Debonded Face-Sheets[J]. Journal of Composite Materials, 2000, 34(14):1176-1199
[8] HANSEN I. Compression Behavior of FRP Sandwich Specimen with Interface Debonded[J]. Journal of Composite Materials, 1998, 32(4):335-360
[9] TZETZIS D, HOGG P J, JOGIA M. The Compression Performance and the Associate Global Buckling Behavior of a Vacuum-Infused Repaired Composite Component Monitored by the Shadow Moire Technique[J]. Experimental Technics, 2008, 32(2):39-46
[10] TOMBLIN J S, SALAH L, WELCH J M, el al. Bonded Repaired of Aircraft Composite Sandwich Structures[R]. DOT/FAA/AR-03/74, 2004
[11] CAMPILHO R D S G, DE MOURA M F S F, RAMANTANI D A, et.al. Buckling Strength of Adhesively-Bonded Single and Double-Strap Repairs on Carbon-Epoxy Structures[J]. Composites Science and Technology, 2010, 70:371-379
[12] RAMANTANI D A, CAMPILHO R D S G. Stress and Failure Analysis of Repaired Sandwich Composite Beams Using a Cohesive Damage Model[J]. Journal of Sandwich Structures & Materials, 2010, 12:369-390
[13] 贾宝惠, 窦晨, 李顶河, 等. 复合材料蜂窝夹芯板斜接式挖补修理的稳定性分析研究[J]. 机械科学与技术, 2012, 31(4):588-591 JIA Baohui, DOU Chen, LI Dinghe, et al. Study on the Buckling of Composite Honeycomb Plate with Scarf Repairs[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(4):588-591(in Chinese)
[14] 郭彦江, 黄俊, 蒙志君, 等. 复合材料层合板贴补修理稳定性研究[J]. 玻璃钢/复合材料, 2013(2):13-16 GUO Yanjiang, HUANG Jun, MENG Zhijun, et al. Study on the Stability of the Composite Laminates with One-Side Bonded Repair[J]. Fiber Reinforced Plastics/Composites, 2013(2):13-16(in Chinese)
[15] 关志东, 刘遂, 郭霞, 等. 含半穿透损伤层合板挖补修理后的拉伸性能[J]. 复合材料学报, 2013, 30(2):144-151 GUAN Zhidong, LIU Sui, GUO Xia, et al. Tensile Behavior of Scarfing Repaired Laminates with Half-Depth Damage[J]. Acta Materiae Compositae Sinica, 2013, 30(2):144-151(in Chinese)
[16] 华洲. 复合材料蜂窝夹芯板结构损伤及其修理后仿真分析[D]. 哈尔滨:哈尔滨工业大学, 2017 HUA Zhou. Numerical Analysis on Damage and Repair of Honeycomb Sandwich Composite Panels[D]. Harbin:Harbin Institute of Technology, 2017(in Chinese)