论文:2020,Vol:38,Issue(5):928-936
引用本文:
韩鹏, 潘光, 黄桥高, 施瑶. 雷诺数对于方柱流致振动能量收集系统的影响[J]. 西北工业大学学报
HAN Peng, PAN Guang, HUANG Qiaogao, SHI Yao. The Effects of Reynolds Number on Energy Harvesting from FIV by a Square Cylinder[J]. Northwestern polytechnical university

雷诺数对于方柱流致振动能量收集系统的影响
韩鹏1,2,3, 潘光1,2, 黄桥高1,2, 施瑶1,2
1. 西北工业大学 航海学院, 陕西 西安 710072;
2. 西北工业大学 水下无人运载工信部重点实验室, 陕西 西安 710072;
3. 巴黎综合理工 力学院, 法国 巴黎 91128
摘要:
在来流作用下,相较于圆柱,方形柱体会发生更为明显的振动响应,其具备良好的海洋能量收集特性。针对方柱流致振动能量收集系统展开数值模拟研究,结合SST k-ω湍流模型求解URANS方程来获得流场信息,并通过Newmark-β方法求解固体振动方程。计算方法与实验数据及其他仿真模拟结果进行了对比,取得了良好的一致性。文章所选取的雷诺数范围为24 000~160 000,相应折合速度为3 < Ur < 20。结果表明,雷诺数对方柱的频率响应、振幅响应、脱涡模式以及能量获取效率均有不可忽视的影响。当雷诺数为88 000时整个系统能量收集效率最高,为7.156%;在雷诺数大于120 000后,方柱由涡激振动转向驰振,其振动响应及能量收集特性发生大幅变化,在雷诺数超过144 000后方柱进入完全驰振状态。
关键词:    涡激振动    驰振    海流能能量捕获    雷诺数    方柱   
The Effects of Reynolds Number on Energy Harvesting from FIV by a Square Cylinder
HAN Peng1,2,3, PAN Guang1,2, HUANG Qiaogao1,2, SHI Yao1,2
1. School of Marine Since and Technology, Northwestern Polytechnical University, Xi'an 710072, China;
2. Key Laboratory for Unmanned Underwater Vehicle, Northwestern Polytechnical University, Xi'an 710072, China;
3. Ladhyx, Ecole Polytechnique, Paris, 91128, France
Abstract:
Under the action of incoming flow, the square cylinder can generate more intense vibration responses than the circular cylinder, which is beneficial for energy harvesting. Numerical simulations for FIV of the square-cylinder energy conversion system are carried out. URANS equations are used in conjunction with the shear stress transport k-ω turbulence model to predict the flow, and the equations for vibrations are solved by the Newmark-β algorithm. The present numerical method is validated against the published data with good consistency. The Reduced velocity Ur is varied from 1-20, with corresponding Reynolds numbers of 24 000-160 000. The numerical results indicate that the Reynolds number significantly affects the frequency response, amplitude response, vortex shedding mode, and energy conversion efficiency. The highest efficiency point locates at Re=88 000, with a value of 7.156%. When Re>120 000, the system transits from vortex-induced vibration into galloping, and its vibration responses as well as energy harvesting characteristics change sharply. Fully developed galloping motion occurs when Re>144 000.
Key words:    vortex induced vibration    galloping    energy harvesting    Reynolds number    square cylinder   
收稿日期: 2019-11-29     修回日期:
DOI: 10.1051/jnwpu/20203850928
基金项目: 国家自然科学基金(51979226, 51709229)及国家重点研发计划(2016YFC03031300)资助
通讯作者: 黄桥高(1983-),西北工业大学副教授,主要从事水动力学研究。e-mail:huangqiaogao@nwpu.edu.cn     Email:huangqiaogao@nwpu.edu.cn
作者简介: 韩鹏(1994-),西北工业大学博士研究生,主要从事流致振动响应及其俘能特性研究。
相关功能
PDF(3457KB) Free
打印本文
把本文推荐给朋友
作者相关文章
韩鹏  在本刊中的所有文章
潘光  在本刊中的所有文章
黄桥高  在本刊中的所有文章
施瑶  在本刊中的所有文章

参考文献:
[1] SARPKAYA T. A Critical Review of the Intrinsic Nature of Vortex-Induced Vibrations[J]. Journal of Fluids and Structures, 2004, 19:389
[2] BERNITSAS M M, RAGHAVAN K, BEN-SIMON Y, et al. VIVACE(Vortex Induced Vibration Aquatic Clean Energy):a New Concept in Generation of Clean and Renewable Energy from Fluid Flow[J]. Journal of Offshore Mechanics and Arctic Engineering, 2008, 130:041101
[3] KHALAK A, WILLAMSON C H K. Motions, Forces and Mode Transitions in Vortex-Induced Vibration at Low Mass-Damping[J]. Journal of Fluids and Structures, 1999, 13:813
[4] WILLAMSON C H K, GOVARDHAN R. Vortex-Induced Vibrations[J]. Annual Review of Fluid Mechanics, 2004, 36:413
[5] BEARMAN P W. Circular Cylinder Wakes and Vortex-Induced Vibrations[J]. Journal of Fluids and Structures, 2011, 27:648
[6] CHANG C C R, KUMAR A, BERNITSAS M M. VIV and Galloping of Single Circular Cylinder with Surface Roughness at 3.0×104Re ≤ 1.2×105[J]. Ocean Engineering, 2011, 38:1713
[7] PARKINSON G V, SMITH J D. The Square Prism as an Aeroelastic Non-linear Oscillator[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1964, 17:225
[8] ZHAO J, LEONTINI J S, LO JACONO D, et al. Fluid-Structure Interaction of a Square Cylinder at Different Angles of Attack[J]. Journal of Fluid Mechanics, 2014, 747:688
[9] ZHAO M, CHENG L, ZHOU T. Numerical Simulation of Vortex-Induced Vibration of a Square Cylinder at a Low Reynolds Number[J]. Physics of Fluidsm, 2013, 25:023603
[10] 徐枫, 欧进萍. 方柱非定常绕流与涡激振动的数值模拟[J]. 东南大学学报, 2005(增刊1):35-39 XU Feng, OU Jinping. Numerical Simulation of Unsteady Flow around Square Cylinder and Vortex-Induced Vibration[J]. Journal of Southeast University, 2005(suppl 1):35-39(in Chinese)
[11] 方平治, 顾明. 高雷诺数条件下二维方柱涡激振动的数值模拟[J]. 同济大学学报, 2008(2):161-165 FANG Pingzhi, Gu Ming. Numerical Simulation of Vortex-Induced Vibration for a Square Cylinder at High Reynolds Number[J]. Journal of Tongji University, 2008(2):161-165(in Chinese)
[12] MENTER F R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications[J]. AIAA Journal, 1994, 32:1598
[13] BEARMAN P W. Vortex Shedding from Oscillating Bluff Bodies[J]. Annual Review of Fluid Mechanics, 1984, 16:195
[14] AL-JAMAL H, DALTON C. Vortex Induced Vibrations Using Large Eddy Simulation at a Moderate Reynolds Number[J]. Journal of Fluids and Structures, 2004, 19:73
[15] CUI Z, ZHAO M, TENG B, et al. Two-Dimensional Numerical Study of Vortex-Induced Vibration and Galloping of Square and Rectangular Cylinders in Steady Flow[J]. Ocean Engineering, 2015, 106:189
[16] 林琳, 王言英. 不同湍流模型下圆柱涡激振动的计算比较[J]. 船舶力学, 2013, 17(10):1115-11125 LIN Lin, WANG Yanying. Comparison between Different Turbulence Models on Vortex Induced Vibration of Circular Cylinder[J]. Journal of Ship Mechanics, 2013, 17(10):1115-11125(in Chinese)