论文:2020,Vol:38,Issue(4):881-888
引用本文:
杨静宁, 王永祥, 马连生. 形状记忆合金梁非对称弯曲问题的力学分析[J]. 西北工业大学学报
YANG Jingning, WANG Yongxiang, MA Liansheng. Mechanical Analysis of Shape Memory Alloy Beams under Asymmetric Bending[J]. Northwestern polytechnical university

形状记忆合金梁非对称弯曲问题的力学分析
杨静宁, 王永祥, 马连生
兰州理工大学 理学院, 甘肃 兰州 730050
摘要:
基于梁的弯曲理论,结合形状记忆合金材料的本构关系,研究了集中载荷作用下形状记忆合金梁的非对称弯曲问题。考虑到弯曲变形过程中拉压两侧相变的不对称性,特引入拉压不对称系数,采用分阶段分步骤的方法,分析得到了工字形截面形状记忆合金梁相变各阶段梁截面上的应力分布、中性轴位移、曲率及相边界的变化情况。结果表明:当载荷相同时,中性轴位移的最大偏移量随着拉压不对称系数增大而增大;当拉压不对称系数相同时,中性轴位移和曲率随着载荷的增大而增大;随着拉压不对称系数增大,混合相占比逐渐增大,马氏体相占比减小,相边界不对称性表现越明显;在相同条件下,矩形截面较工字形截面易发生相变。
关键词:    形状记忆合金    拉压不对称系数    相变    相边界   
Mechanical Analysis of Shape Memory Alloy Beams under Asymmetric Bending
YANG Jingning, WANG Yongxiang, MA Liansheng
School of Science, Lanzhou University of Technology, Lanzhou 730050, China
Abstract:
Based on the bending theory of beams, combining with the constitutive relationship of shape memory alloy materials, the asymmetric bending of shape memory alloy beams under concentrated load was studied. Considering tension-compression asymmetry on both sides of the tension and compression in the process of bending, tension-compression asymmetry coefficient was introduced, by using the step-by-step method. The stress distribution, neutral axis displacement, curvature and phase boundary of the beam sections of the I-shaped cross-section shape memory alloy beam were analyzed. The results show that under the same load, the maximum offset of the neutral axis displacement increases with the increase of tension-compression asymmetry coefficient. Under the same tension-compression asymmetry coefficient, the displacement and curvature of the neutral axis increased with the increase of load; as tension-compression asymmetry coefficient increased, the proportion of mixed phase increased gradually, the proportion of martensite phase decreased, and the asymmetry of phase boundary became more obvious. Under the same conditions, the rectangular section is more suitable. The cross section of I shaped cross section was prone to occur phase transformation.
Key words:    shape memory alloy    tension-compression asymmetry coefficient    phase transformation    phase boundary   
收稿日期: 2019-10-14     修回日期:
DOI: 10.1051/jnwpu/20203840881
基金项目: 国家自然科学基金(11862012)资助
通讯作者:     Email:
作者简介: 杨静宁(1969-),兰州理工大学副教授,主要从事于复合材料结构的力学研究。
相关功能
PDF(1457KB) Free
打印本文
把本文推荐给朋友
作者相关文章
杨静宁  在本刊中的所有文章
王永祥  在本刊中的所有文章
马连生  在本刊中的所有文章

参考文献:
[1] 贡长生, 张克立. 新型功能材料[M]. 北京:化学工业出版社.2001 GONG Changsheng, ZHANG Keli. New Functional Materials[M]. Beijing:Chemical Industry Press, 2001(in Chinese)
[2] 张京山, 张灏, 陈耕, 等. 金属及合金材料手册[M]. 北京:金盾出版社, 2005 ZHANG Jingshang, ZHANG Hao, CHEN Geng, et al. Metaland Alloy Materials Handbook[M]. Beijing:Golden Shield Press, 2005(in Chinese)
[3] 赵连成, 蔡伟, 郑玉峰. 合金的形状记忆效应与超弹性[M]. 北京:国防工业出版社,2002 ZHAO Liancheng, CAI Wei, ZHENG Yufeng. Shape Memory Effect and Superelasticity of Alloy[M]. Beijing:National Defense Industry Press, 2002(in Chinese)
[4] 贺志荣, 王芳, 周敬恩. TiNi合金的形状记忆效应及其工程应用研究进展[J]. 材料热处理学报, 2005, 26(5):21-27 He Zhirong, WANG Fang, ZHOU Jing'en. Research Progress on Shape Memory Effect and Engineering Application of Tini Alloy[J]. Transactions of Materials and Heat Treatment, 2005, 26(5):21-27(in Chinese)
[5] LIANG C. The Constitutive Modeling of Shape Memory Alloys[D]. Virginia:Virginia Polytechnic Institute and State University, 1990, 24
[6] AKHIL Bhardwaj, AMIT Kumar Gupta, SHANTHAN Kumar Padisala, et al. Characterization of Mechanical and Microstructural Properties of Constrained Groove Pressed Nitinol Shape Memory Alloy for Biomedical Applications[J]. MaterialsScience & Engineering, 2019,102(102):730-742
[7] DONATELLD Cardone, RICCARDD Angiuli, GIUSEPPE Gesualdi. Application of Shape Memory Alloys in Historical Constructions[J]. International Journal of Architectural Heritage, 2019, 13(3):390-401
[8] 江洪, 王微, 王辉, 等. 国内外智能材料发展状况分析[J]. 新材料产业, 2014, 5:2-9 JIANG Hong, WANG Wei, WANG Hui, et al. Analysis on the Development of Intelligent Materials at Home and Abroad[J]. Advanced Materials Industry, 2014, 5:2-9(in Chinese)
[9] SHAHIRNIA M, FARHAT Z, JARJOURA G. Effects of Temperature and Loading Rate on the Deformation Characteristics of Superelastic TiNi Shape Memory Alloys under Localized Compressive Loads[J]. Materials Science & Amp, Engineering A, 2011, 530:628-632
[10] FLOR S, URBINA C, FERRANDO F. Asym Metrical Bending Model for NiTi Shape Memory Wires:Numerical Simulations and Experimental Analysis[J]. Strain, 2011, 47(3):255-267
[11] 商泽进,王忠民. 形状记忆合金梁的非线性弯曲变形[J]. 机械工程学报,2011,47(18):28-32 SHANG Zejin, WANG Zhongming. Nonlinear Bending Deformation of Shape Memory Alloy Beam[J]. Journal of Mechanical Engineering, 2011, 47(18):28-32(in Chinese)
[12] AURICCHIO F, SACCO E. A One-Dimensional Model for Super Elastic Shape-Memory Alloys with Different Elastic Properties between Austenite and Martensite[J]. International Journal of NonLinear Mechanics, 1997, 32(6):1101-1114
[13] HELM D, HAUPT P. Thermomechanical Behavior of Shape Memory Alloys[C]//SPIE's 8th Annual International Symposium on Smart Structures and Materials, 2001
[14] AHMADREZA E, MOHAMMAD E. Exact Solution for Bending of Shape Memory Alloy Superelastic Beams[C]//Proceedings of the ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent System, 2011
[15] SOUZA A C, MAMIYA E N, ZOUAIN N. Three-Dimenional Model for Solids Undergoing Stress-Induced Phase Transformations[J]. European Journal of Mechanics-A/Solids, 1998, 17(5):789-806
[16] 崔世堂, 姜锡权, 严军. 形状记忆合金梁纯弯曲的理论分析[J]. 应用力学学报, 2016, 33(1):43-49 CUI Shitang, JIANG Xiquan, YAN Jun. Theoretical Analysis of Shape Memory Alloy Beam Subjected to Pure Bending[J]. Journal of Applied Mechanics, 2016, 33(1):43-49(in Chinese)
[17] 任勇生, 田继爽, 刘银磊, 等. 形状记忆合金纤维复合材料梁非线性变形、热屈曲和振动[J]. 山东科技大学学报, 2019, 38(1):99-110 REN Yongsheng, TIAN Jishuang, LIU Yinlei, et al. Nonlinear Deformation, Thermal Buckling and Vibration of SMA Fiber Composite Beams[J]. Journal of Shandong University of Science and Technology, 2019, 38(1):99-110(in Chinese)
[18] 韩悌信,曾祥国,陈华燕,等. TiNi形状记忆合金动态力学性能测试[J]. 稀有金属材料与工程, 2017,46(增刊1):45-50 HAN Tixin, ZENG Xiangguo, CHEN Huayan, et al. Tests of Dynamic Mechanical Properties for TiNi Shape Memory Alloy[J]. Rare Metal Materials and Engineering, 2017, 46(suppl 1):45-50(in Chinese)
[19] ATANACKOVIC T, ACHENBACH M. Moment Curvature Relations for a Pseudoelastic Beam[J]. Continuum Mechanics and Thermodynamics, 1989, 11(1):73-80
[20] MIRZAEIFAR R, DESROCHES R, YAVARI A, et al. On Superelastic Bending of Shape Memory Alloy Beams[J]. International Journal of Solids and Structures, 2013, 50(10):1664-1680
[21] AURICCHIO F, MORGANTI S, REALI A, et al. Theoretical and Experimental Study of the Shape Memory Effect of Beams in Bending Conditions[J]. Journal of Materials Engineering & Performance, 2011, 20(4/5):712-718
[22] REEDLUNN B, CHURCHILL C B, NELSON E E, et al. Tension, Compression, and Bending of Superelastic Shape Memory Alloy Tubes[J]. Journal of the Mechanics and Physics of Solids, 2014, 63:506-537
[23] 饶敏,袁修文,张成. 腹板开孔冷弯薄壁C形钢非纯弯构件有限元分析[J]. 山西建筑,2018,44(18):40-41 RAO Min, YUAN Xiuwen, ZHANG Cheng. Finite Element Analyses of Cold-Formed Thin-Walled C-Section Steel Members with Web Holes under Non-Pure Bending Condition[J]. Shanxi Architecture, 2018, 44(18):40-41(in Chinese)
[24] 杨静宁,王吉昌,马连生. 热-机载荷下形状记忆合金梁变形特性的研究[J]. 稀有金属,2018,42(10):1032-1039 YANG Jingning, WANG Jichang, MA Liansheng. Deformation Characteristics of Shape Memory Alloy Beam under Thermal and Mechanical Loads[J]. Chinese Journal of Rare Metals, 2018, 42(10):1032-1039(in Chinese)