论文:2020,Vol:38,Issue(4):873-880
引用本文:
肖阳, 秦海勤, 徐可君, 王永旗. 不同保载时间下FGH96粉末高温合金疲劳-蠕变试验研究[J]. 西北工业大学学报
XIAO Yang, QIN Haiqin, XU Kejun, WANG Yongqi. Experimental Study on Fatigue-Creep of P/M FGH96 Superalloy with Different Holding Time[J]. Northwestern polytechnical university

不同保载时间下FGH96粉末高温合金疲劳-蠕变试验研究
肖阳1, 秦海勤1, 徐可君1, 王永旗2
1. 海军航空大学青岛校区 航空机械工程与指挥系, 山东 青岛 266000;
2. 中国人民解放军 91213部队, 山东 烟台 264000
摘要:
对航空发动机涡轮盘的典型材料FGH96粉末高温合金不同保载时间下的疲劳-蠕变变形特性及微观损伤机理进行了试验研究。开展了550℃下不同保载时间的低周疲劳-蠕变试验,讨论了保载时间对FGH96合金应力-应变曲线、循环应变响应、疲劳-蠕变寿命及损伤机理的影响。结果表明:保载时间对FGH96合金疲劳-蠕变变形特性有显著影响,随着保载时间的增加,非弹性应变迟滞能增大,稳态滞回曲线发生右移,包络应变及包络应变率增加,疲劳-蠕变寿命先呈指数减小后趋于平稳,蠕变损伤逐渐起主导作用。断口分析表明:保载时间的引入使得断面呈现出多裂纹源特征,断裂模式由穿晶断裂向穿晶-沿晶混合断裂转变,裂纹扩展区存在滑移带及少量韧窝,瞬断区韧窝特征明显。
关键词:    涡轮盘    粉末高温合金    疲劳-蠕变    变形特性    断口分析   
Experimental Study on Fatigue-Creep of P/M FGH96 Superalloy with Different Holding Time
XIAO Yang1, QIN Haiqin1, XU Kejun1, WANG Yongqi2
1. Department of Aviation Mechanical Engineering and Management in Qingdao Branch, Naval Aviation University, Qingdao 266000, China;
2. 91213 Troops of PLA, Yantai 264000, China
Abstract:
The fatigue-creep deformation characteristics and evolutions of microstructure of P/M superalloy FGH96 widely used for the turbine disc of an aero-engine were investigated experimentally. The low cycle fatigue-creep tests with different holding times were performed at 550℃. The influence of the holding time on the stress-strain curve, cyclic strain response, fatigue-creep life and damage mechanism were discussed. The results reveal that the holding time has a significant effect on the fatigue-creep deformation characteristics. As the holding time increases, the hysteretic energy of inelastic strain rises, the steady-state hysteresis curve shifts to the right and the envelope strain and the envelope strain rate increase. Fatigue-creep life decreases firstly exponentially and then stabilizes. The creep damage gradually plays a leading role. The fracture analysis indicates that the introduction of the holding time makes the section appear as a multi-crack source. The fracture mode changes from transgranular fracture to transgranular-intergranular mixed fracture. The slip bands and a small amount of dimples appear in the crack propagation zone and the dimple characteristics of the transient fracture zone are obvious.
Key words:    turbine disc    P/M superalloy    fatigue-creep    deformation characteristics    fracture analysis   
收稿日期: 2019-10-14     修回日期:
DOI: 10.1051/jnwpu/20203840873
基金项目: 国家自然科学基金(51975580)与国家自然科学基金青年基金(61803071)资助
通讯作者:     Email:
作者简介: 肖阳(1991-),海军航空大学博士研究生,主要从事航空发动机结构强度与可靠性研究。
相关功能
PDF(4197KB) Free
打印本文
把本文推荐给朋友
作者相关文章
肖阳  在本刊中的所有文章
秦海勤  在本刊中的所有文章
徐可君  在本刊中的所有文章
王永旗  在本刊中的所有文章

参考文献:
[1] 吕志强. 航空发动机轮盘低周疲劳寿命预测方法研究[D]. 成都:电子科技大学, 2012 LYU Zhiqiang. Research on Low Cycle Fatigue Life Prediction Methodology of Aero-Engine Disc[D]. Chengdu:University of Electronic Science and Technology of China, 2012(in Chinese)
[2] 胡殿印, 马琦航, 高晔, 等. GH720Li镍基高温合金蠕变-疲劳试验研究[J]. 稀有金属材料与工程, 2018, 47(7):2185-2191 HU Dianyin, MA Qihang, GAO Ye, et al. Creep-Fatigue Behavior of Nickel-Based Superalloy GH720Li[J]. Rare Metal Materials and Engineering, 2018, 47(7):2185-2191(in Chinese)
[3] 佴启亮, 董建新, 张麦仓, 等. 粉末高温合金FGH97疲劳裂纹扩展行为[J]. 工程科学学报, 2016, 38(2):248-256 ER Qiliang, DONG Jianxin, ZHANG Maicang, et al. Fatigue Behavior of Powder Metallurgy Superalloy FGH97[J]. Chinese Journal of Engineering, 2016, 38(2):248-256(in Chinese)
[4] 付青峰, 杨细莲, 刘克明. 航空发动机高温材料的研究现状及展望[J]. 热处理技术与装备, 2018, 39(3):69-73 FU Qingfeng, YANG Xilian, LIU Keming. Current Status of Research and Prospect of High Temperature Materials for Aeroengine[J]. Heat Treatment Technology and Equipment, 2018, 39(3):69-73(in Chinese)
[5] 郭茂文, 刘春荣, 郑雪萍, 等. 粉末高温合金的研究现状[J]. 热加工工艺, 2017, 46(20):11-13 GUO Maowen, LIU Chunrong, ZHENG Xueping, et al. Research Status of Powder Metallurgy Superalloy[J]. Hot Working Technology, 2017, 46(20):11-13(in Chinese)
[6] 雷景富, 郑勇, 余俊, 等. 镍基粉末高温合金的研究进展[J]. 宇航材料工艺, 2011, 41(6):18-22 LEI Jingfu, ZHENG Yong, YU Jun, et al. P/M Nickel-Based Superalloy[J]. Aerospace Materials & Technology, 2011, 41(6):18-22(in Chinese)
[7] 张仁鹏, 李付国, 王晓娜. FGH96合金的热变形行为及其热加工图[J]. 西北工业大学学报, 2007, 25(5):652-656 ZHANG Renpeng, LI Fuguo, WANG Xiaona. Determining Processing Maps of FGH96 Superalloy[J]. Journal of Northwestern Polytechnicial University, 2007, 25(5):652-656(in Chinese)
[8] 聂龙飞. FGH96粉末高温合金热变形及动态再结晶演化研究[D]. 大连:大连理工大学, 2014 NIE Longfei. Study on the Hot Deformation Behavior and Dynamic Recrystallization Behavior of FGH96 P/M Superalloy[D]. Dalian:Dalian University of Technology, 2014(in Chinese)
[9] WANG Y R, WANG X C, ZHONG B, et al. Estimation of Fatigue Parameters in Total Strain Life Equation for Powder Metallurgy Superalloy FGH96 and Other Metallic Materials[J]. International Journal of Fatigue, 2019, 122:116-124
[10] ZHONG B, WANG Y R, WEI D S, et al. Multiaxial Fatigue Life Prediction for Powder Metallurgy Superalloy FGH96 Based on Stress Gradient Effect[J]. International Journal of Fatigue, 2017, 109:26-36
[11] 苗国磊, 杨晓光, 石多奇. 粉末冶金镍基高温合金FGH96高温疲劳寿命分散性特征[J]. 航空动力学报, 2017, 32(2):424-428 MIAO Guolei, YANG Xiaoguang, SHI Duoqi. Behavior of Fatigue Life Variability of Nickel-Based Powder Metallurgy Superalloy FGH96 at Elevated Temperature[J]. Journal of Aerospace Power, 2017, 32(2):424-428(in Chinese)
[12] 冯引利, 吴长波, 郜伟强. FGH96涡轮盘低循环疲劳寿命分析技术与试验[J]. 航空动力学报, 2012, 27(3):628-634 FENG Yinli, WU Changbo, GAO Weiqiang. Analysis Technology and Experiment for FGH96 Disk's LCF Life[J]. Journal of Aerospace Power, 2012, 27(3):628-634(in Chinese)
[13] 冯引利, 杨健, 吴长波. 考虑表面加工状态的粉末盘低循环疲劳寿命分析[J]. 航空动力学报, 2018, 33(2):265-272 FENG Yinli, YANG Jian, WU Changbo. Analysis of Powder Alloy Disk's Low Cycle Fatigue Life with Surface Machining Status[J]. Journal of Aerospace Power, 2018, 33(2):265-272(in Chinese)
[14] 周静怡, 刘昌奎, 赵文侠, 等. 粉末高温合金FGH96原始颗粒边界及高温原位高周疲劳研究[J]. 航空材料学报, 2017, 37(5):83-89 ZHOU Jingyi, LIU Changkui, ZHAO Wenxia, et al. Prior Particle Boundary of PM FGH96 Superalloy and Its In-Situ High-Cycle Fatigue at Elevated Temperature[J]. Journal of Aeronautical Materials, 2017, 37(5):83-89(in Chinese)
[15] NING Y Q, LI H, YAO Z K, et al. Recrystallization Characterization of FGH96 Superalloy[J]. Rare Metal Materials and Engineering, 2016, 45(5):1225-1229
[16] LIU C K, WEI Z W, ZHANG J Q, et al. Effect of Hot Deformation on PPB Precipitations and Microstructure in P/M Superalloy FGH96[J]. Journal of Aeronautical Materials, 2018, 38(3):40-45
[17] FENG Y F, ZHOU X M, ZOU J W. Effect of Cooling Rate during Quenching on the Microstructure and Creep Property of Nickel-Based Superalloy FGH96[J]. International Journal of Minerals Metallurgy and Materials, 2019, 26(4):493-499
[18] FANG B, TIAN G F, ZHEN J, et al. Study on the Thermal Deformation Behavior and Microstructure of FGH96 Heat Extrusion Alloy during Two-Pass Hot Deformation[J]. International Journal of Minerals Metallurgy and Materials, 2019, 26(5):657-663
[19] LIU H S, ZHANG L, HE X B, et al. The Precipitation Behavior of Secondary Gamma' Phase in Superalloy FGH96 during Aging Treatment[J]. High Temperature Materials and Processes, 2014, 33(5):485-488
[20] 许捷, 徐元铭, 刘新灵, 等. 夹杂物对粉末高温合金材料裂纹萌生的影响[J]. 西北工业大学学报, 2017, 35(增刊1):108-112 XU Jie, XU Yuanming, LIU Xinling, et al. Inclusion Effect on Crack Initiation of Powder Metallurgy Superalloy[J]. Journal of Northwestern Polytechnical University, 2017, 35(suppl 1):108-112(in Chinese)
[21] 徐伟. FGH96合金惯性摩擦焊接过程动态再结晶行为研究[D]. 大连:大连理工大学, 2012 XU Wei. Investigation on Dynamic Recrystallization Behavior of FGH96 Superalloy During Inertia Friction Welding Process[D]. Dalian:Dalian University of Technology, 2012(in Chinese)
[22] 刘玉红, 李付国, 李超, 等. 一种基于ANN的FGH96合金动态流动行为的电路模型[J]. 西北工业大学学报, 2004, 22(1):120-123 LIU Yuhong, LI Fuguo, LI Chao, et al. An Analog-Circuit Model of PM96 Superalloy Plasticity Behaviors for Real-Time Control during Hot Deformation[J]. Journal of Northwestern Polytechnical University, 2004, 22(1):120-123(in Chinese)
[23] CHAVOSHI S Z, JIANG J, WANG Y, et al. Density-Based Constitutive Modeling of P/M FGH96 for Powder Forging[J]. International Journal of Mechanical Sciences, 2018, 138:110-121
[24] 姚磊江, 童小燕, 吕胜利. 低周疲劳过程中的非弹性响应和热响应[J]. 西北工业大学学报, 2003, 21(1):83-86 YAO Leijiang, TONG Xiaoyan, LYU Shengli. Inelastic and Thermal Response during Low Cycle Fatigue Process[J]. Journal of Northwestern Polytechnical University, 2003, 21(1):83-86(in Chinese)
[25] 苏运来, 陆山, 杨茂, 等. 任意应力比下涡轮盘的塑性应变能寿命模型[J]. 航空动力学报, 2017, 32(4):828-834 SU Yunlai, LU Shan, YANG Mao, et al. Plastic Strain Energy-Life Model of Turbine Disk under Various Stress Ratios[J]. Journal of Aerospace Power, 2017, 32(4):828-834(in Chinese)
[26] 刘金龙, 杨晓光, 石多奇, 等. 不同保载时间作用下的定向凝固合金DZ125的高温低循环疲劳试验研究[J]. 航空材料学报, 2010, 30(5):88-92 LIU Jinlong, YANG Xiaoguang, SHI Duoqi, et al. Experimental Study on Low Cycle Fatigue of Directionally Solidified Superalloy DZ125 with Different Holding Time[J]. Journal of Aeronautical Materials, 2010, 30(5):88-92(in Chinese)