论文:2020,Vol:38,Issue(4):784-791
引用本文:
王云, 范玮, 江金涛, 张鹏. 障碍物对脉冲爆震发动机填充过程的影响研究[J]. 西北工业大学学报
WANG Yun, FAN Wei, JIANG Jintao, ZHANG Peng. Study on Effect of Obstacle Shapes on Filling Process in Pulse Detonation Rocket Engine[J]. Northwestern polytechnical university

障碍物对脉冲爆震发动机填充过程的影响研究
王云, 范玮, 江金涛, 张鹏
西北工业大学 动力与能源学院, 陕西 西安 710129
摘要:
为了探究障碍物对脉冲爆震火箭发动机(pulse detonation rocket engine,PDRE)在无阀自适应工作方式下燃料与氧化剂填充过程的影响,采用汽油为燃料,富氧空气为氧化剂,开展了装有4种障碍物的无阀式PDRE两相单次填充过程的数值模拟及PDRE多循环爆震实验研究。研究结果表明:障碍物阻碍了燃料向爆震管尾部的填充,使得填充结果存在极大的轴向和径向不均匀性,燃油液滴在爆震管头部和管壁附近聚集,孔板型障碍物对燃料的填充有严重的阻碍作用;Shchelkin螺旋、螺旋凹槽和环形凹槽可以实现爆震起始与稳定传播,而孔板无法实现爆震起始。
关键词:    脉冲爆震火箭发动机    两相流    障碍物形状    填充过程    数值模拟   
Study on Effect of Obstacle Shapes on Filling Process in Pulse Detonation Rocket Engine
WANG Yun, FAN Wei, JIANG Jintao, ZHANG Peng
School of Power and Energy, Northwestern Polytechnical University, Xi'an 710129, China
Abstract:
In order to explore the influence of obstacle shapes on the filling process of pulse detonation rocket engine under valveless self-adaptive working mode, the numerical simulations of two-phase single filling process and multi-cycle experiment were carried out, in which gasoline was utilized as fuel,and oxygen-enriched air as oxidizer. The effects of four kinds of obstacles with different shapes on the filling process of PDRE were studied. The results showed that the existence of obstacles blocks the filling of fuel into the tail of detonation tube, resulting in a great non-uniformity of filling results in the axial and radial directions. Fuel droplets collect near the head and wall of detonation tube, and droplets are seriously blocked by orifice plates. The detonation initiation and stable propagation can be achieved by Shchelkin spirals, annular grooves and spiraling grooves, while the detonation initiation cannot be achieved by orifice plates.
Key words:    pulse detonation rocket engine    two-phase flow    obstacle shape    filling process    numerical simulation   
收稿日期: 2019-11-02     修回日期:
DOI: 10.1051/jnwpu/20203840784
基金项目: 国家自然科学基金(51876179)资助
通讯作者:     Email:
作者简介: 王云(1991-),西北工业大学博士研究生,主要从事脉冲爆震发动机研究。
相关功能
PDF(3763KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王云  在本刊中的所有文章
范玮  在本刊中的所有文章
江金涛  在本刊中的所有文章
张鹏  在本刊中的所有文章

参考文献:
[1] 严传俊, 范玮. 脉冲爆震发动机原理及关键技术[M]. 西安:西北工业大学出版社, 2005 YAN Chuanjun, FAN Wei. Pulse Detonation Engine Principle and Key Issues of Technology[M]. Xi'an:Northwestern Polytechnical University Press, 2005(in Chinese)
[2] ROY G D, FROLOV S M, BORISOV A A, et al. Pulse Detonation Propulsion:Challenges, Current Status, and Future Perspective[J]. Progress in Energy and Combustion Science, 2004, 30:545-672
[3] CICCARELLI G, DOROFEEV S. Flame Acceleration and Transition to Detonation in Ducts[J]. Progress in Energy and Combustion Science. 2008, 34:499-550
[4] LI J L, FAN W, YAN C J, et al, Performance Enhancement of a Pulse Detonation Rocket Engine[J]. Proceedings of the Combustion Institute, 2011, 33:2243-2254
[5] HUANG Y, TANG H, ZHANG C. Studies of DDT Enhancement Approaches for Kerosene-Fueled Small-Scale Pulse Detonation Engines Applications[J]. Shock Wave, 2012, 22:615-625
[6] GOODWIN G B, HOUIM R W, ORAN E S. Shock Transition to Detonation in Channels with Obstacles[J]. Proceedings of the Combustion Institute, 2017, 36:2717-2724
[7] ZHENG W, KAPLAN C R, HOUIM R W, et al. Flame Acceleration and Transition to Detonation:Effects of a Composition Gradient in a Mixture of Methane and Air[J]. Proceedings of the Combustion Institute, 2019, 37:3521-3528
[8] BOECK L R, BERGER F M, HASSLBERGER J, et al. Detonation Propagation in Hydrogen-Air Mixtures with Transverse Concentration Gradients[J]. Shock Wave, 2016, 26:181-192
[9] WANG C J, WEN J X. Numerical Simulation of Flame Acceleration and Deflagration-to-Detonation Transition in Hydrogen-Air Mixtures with Concentration Gradients[J]. International Journal of Hydrogen Energy, 2017, 42:7657-7663
[10] BROPHY C M, HANSON R K. Fuel Distribution Effects on Pulse Detonation Engine Operation and Performance[J]. Journal of Propulsion and Power, 2006, 22(6):1155-1161
[11] MI X C, TIMOFEEV E V, HIGGINS A J. Effect of Spatial Discretization of Energy on Detonation Wave Propagation[J]. Journal of Fluid Mechanics, 2017, 817:306-338
[12] WU Y W, HAN Q X, YANG G Y. Effect of an Acoustic Atomizer upon Liquid-Fueled Detonation Initiations in a Detonation Tube[J]. Experimental Thermal and Fluid Science, 2019, 109:1-9
[13] LU W, FAN W, WANG K, et al. Operation of a Liquid-Fueled and Valveless Pulse Detonation Rocket Engine at High Frequency[J]. Proceedings of the Combustion Institute. 2017, 36:2657-2664
[14] KAILASANATH K. Liquid-Fueled Detonations in Tubes[J]. Journal of Propulsion and Power, 2006, 22(6):1261-1268
[15] LI J, LAI W H, CHUNG K, et al. Uncertainty Analysis of Defl Agration-to-Detonation Run-up Distance[J]. Shock Wave, 2005, 14(5/6):413-420