论文:2020,Vol:38,Issue(4):774-783
引用本文:
刘雪梅, 邓子辰. 饱和多孔弹性Timoshenko梁动力响应的广义多辛数值实现[J]. 西北工业大学学报
LIU Xuemei, DENG Zichen. Generalized Multi-Symplectic Numerical Implementation of Dynamic Responses for Saturated Poroelastic Timoshenko Beam[J]. Northwestern polytechnical university

饱和多孔弹性Timoshenko梁动力响应的广义多辛数值实现
刘雪梅1,2, 邓子辰1
1. 西北工业大学 力学与土木建筑学院, 陕西 西安 710072;
2. 长安大学 理学院, 陕西 西安 710064
摘要:
采用广义多辛数值算法研究不可压饱和多孔弹性Timoshenko梁的流固耦合动力响应特性,构造梁动力响应方程的广义多辛形式,给出其Preissmann Box离散格式及各种广义多辛局部守恒律误差离散格式。数值模拟两端可渗透多孔弹性Timoshenko悬臂梁的动力响应过程,并分析其动力响应特性。发现两相耦合作用系数增大,梁各横截面的孔隙流体压力等效力偶、固相挠度和固相有效应力达到稳态值所需的时间缩短;梁长细比增大,所需时间加长,且挠度稳态值越接近相应经典单相弹性Euler-Bernoulli梁的静挠度值;随时间的推移,梁固相骨架承担所有外荷载,孔隙流体压力等效力偶最终将为零。表征耗散效应的参数取值减小,各种广义多辛数值误差的数量级也减小。
关键词:    饱和多孔介质    Timoshenko梁    悬臂梁    固相骨架    动力响应    有效应力    孔隙度    Darcy渗流系数    衰减振动    耗散    多辛算法    广义多辛    数值实现    局部保结构   
Generalized Multi-Symplectic Numerical Implementation of Dynamic Responses for Saturated Poroelastic Timoshenko Beam
LIU Xuemei1,2, DENG Zichen1
1. School of Mechanics and Civil Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
2. School of Sciences Mechanics, Chang'an University, Xi'an 710064, China
Abstract:
Based on the porous media theory and Timoshenko beam theory, properties of dynamic responses in fluid-solid coupled incompressible saturated poroelastic Timoshenko beam are investigated by generalized multi-symplectic method. Dynamic response equation set of incompressible saturated poroelastic Timoshenko beam is presented at first. Then a first order generalized multi-symplectic form of this dynamic response equation set is constructed, and errors of generalized multi-symplectic conservation law, generalized multi-symplectic local momentum and generalized multi-symplectic local energy are also derived. A Preissmann Box generalized multi-symplectic scheme of the dynamic response equation set is presented, the discrete errors of generalized multi-symplectic conservation law, generalized multi-symplectic local momentum conservation law and generalized multi-symplectic local energy conservation law are also obtained. In view of the dynamic responses of incompressible saturated poroelastic Timoshenko cantilever beam with two ends permeable and free end subjected to the step load, the transverse dynamic response process of the solid skeleton is simulated numerically, the evolution processes of solid effective stress and the equivalent moment of the pore fluid pressure over time are also presented numerically. The effects of fluid-solid coupled interaction parameter and slenderness ratio of the beam on the solid dynamic response process are revealed, as well as the effects on all generalized multi-symplectic numerical errors are checked simultaneously. From results obtained, the processes for solid deflection, solid effective stress and the equivalent moment of the pore fluid pressure approaching to their steady response values are all shortened with increasing of fluid-solid coupled interaction parameter, while the response process of solid deflection and the pore fluid equivalent moment are lengthened with increasing of slenderness ratio of the beam. Moreover, the steady value of solid deflection is much closer to the static deflection value of classic single phase elastic Euler-Bernoulli beam with increasing of the slenderness ratio. As time goes on, the solid skeleton of the beam will support all outside load, so equivalent moment of the pore fluid pressure becomes zero at last. In addition, it is presented all generalized multi-symplectic numerical errors decrease with the decreasing of parameters representing the dissipation effect for the dynamic system.
Key words:    saturated porous media    saturated poroelastic Timoshenko beam    cantilever beam    solid skeleton    dynamic response    effective stress    porosity    darcy permeability coefficient    attenuation vibration    dissipation    multi-symplectic method    generalized multi-symplectic method    numerical implementation    local conserved structure   
收稿日期: 2019-09-17     修回日期:
DOI: 10.1051/jnwpu/20203840774
通讯作者:     Email:
作者简介: 刘雪梅(1980-),女,西北工业大学博士研究生,主要从事多孔介质问题和保结构算法研究。
相关功能
PDF(2848KB) Free
打印本文
把本文推荐给朋友
作者相关文章
刘雪梅  在本刊中的所有文章
邓子辰  在本刊中的所有文章

参考文献:
[1] LI L P, CEDERBAUM G, SCHULGASSER K. A Finite Element Model for Poroelastic Beams with Axial Diffusion[J]. Com puters & Structures, 1999, 73(6):595-608
[2] 杨骁, 李丽. 不可压饱和多孔弹性梁、杆动力响应的数学模型[J]. 固体力学学报, 2006, 27(2):159-166 YANG Xiao, LI Li. Mathematical Model for Dynamics of Incompressible Saturated Poroelastic Beam and Rod[J]. Acta Mechan ica Solida Sinica, 2006, 27(2):159-166(in Chinese)
[3] WANG Z H, PREVOST J H, OLIVIER C. Bending of Fluid-Saturated Linear Poroelastic Beams with Compressible Constituents[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(4):425-447
[4] 周凤玺, 米海珍. 弹性地基上不可压含液饱和多孔弹性梁的自由振动[J]. 兰州理工大学学报, 2014, 40(2):118-122 ZHOU Fengxi, MI Haizhen. Free Vibration of Poroelastic Beam with Incompressible Saturated Liquid on Elastic Foundation[J]. Journal of Lanzhou University of Technology, 2014, 40(2):118-122(in Chinese)
[5] LOU P, DAI G L, ZENG Q Y. Finite-Element Analysis for a Timoshenko Beam Subjected to a Moving Mass[J]. Journal of Mechanical Engineering Science, 2006, 220(5):669-678
[6] YANG X, WEN Q. Dynamic and Quasi-Static Bending of Saturated Poroelastic Timoshenko Cantilever Beam[J]. Applied Mathematics and Mechanics, 2010, 31(8):995-1008
[7] 吴峰, 徐小明, 高强, 等. 基于辛理论的Timoshenko梁波散射分析[J]. 应用数学和力学, 2013, 34(12):1225-1352 WU Feng, XU Xiaoming, GAO Qiang, et al. Analyzing the Wave Scattering in Timoshenko Beam Based on the Symplectic Theory[J]. Applied Mathematics and Mechanics, 2013, 34(12):1225-1352(in Chinese)
[8] KIANI K, AVILI H G, KOJORIAN A N. On the Role of Shear Deformation in Dynamic Behavior of a Fully Saturated Poroelastic Beam Traversed by a Moving Load[J]. International Journal of Mechanical Sciences, 2015, 94/95(1):84-95
[9] CHOUIYAKH H, AZRAR L, ALNEFAIE K, et al. Vibration and Multi-Crack Identification of Timoshenko Beams under Moving Mass Using the Differential Quadrature Method[J]. International Journal of Mechanical Sciences, 2017, 120(1):1-11
[10] 高强, 张洪武, 张亮, 等. 拉压刚度不同桁架的动力参变量变分原理保辛算法[J]. 振动与冲击, 2013, 32(4):179-184 GAO Qiang, ZHANG Hongwu, ZHANG Liang, et al. Dynamic Parametric Variational Principle and Symplectic Algorithm for Trusses with Different Tensional and Compressional Stiffnesses[J]. Journal of Vibration and Shock, 2013, 32(4):179-184
[11] Mcdonald F, Mclachlan R I, Moore B E, et al. Travelling Wave Solution of Multisymplectic Discretizations of Semi-Linear Wave Equations[J]. Journal of Difference Equations and Applications, 2016, 22(7):913-940
[12] Peng H J, Tan S J, Gao Q, et al. Symplectic Method Based on Generating Function for Receding Horizon Control of Linear Time-Varying Systems[J]. European Journal of Control, 2017, 33(1):24-34
[13] Hu W P, Deng Z C. Multi-Symplectic Method to Analyze the Mixed State of Ⅱ-Superconductors[J]. Science in China, 2008, 51(12):1835-1844
[14] HU W P, DENG Z C, ZHANG Y, Multi-Symplectic Method for Peakon-Antipeakon Collision of Quasi-Degasperis-Procesi Equation[J]. Computer Physics Communications, 2014, 185(7):2020-2028
[15] HU W P, HAN S M, DENG Z C, et al. Analyzing Dynamic Response of Non-Homogeneous String Fixed at Both Ends[J]. International Journal of Non-Linear Mechanics, 2012, 47(10):1111-1115
[16] HU W P, DEBG Z C, HAN S M, et al. Generalized Multi-Sympletic Integrators for a Class of Hamiltonian Nonlinear Wave PDEs[J]. Journal of Computational Physics, 2013, 235(4):394-406
[17] 刘雪梅, 邓子辰, 胡伟鹏. 饱和多孔弹性杆热传导的广义多辛方法及其数值实现[J]. 西北工业大学学报, 2015, 33(2):265-270 LIU Xuemei, DENG Zichen, HU Weipeng. Generalized Multi-Symplectic Method and Numerical Experiment for Thermal Conduction of Saturated Poroelastic Rod[J]. Journal of Northwestern Polytechnical University, 2015, 33(2):265-270(in Chinese)
[18] ZHANG Y, DENG Z C, HU W P. Generalized Multi-Symplectic Integrator for Vibration of a Damping String with the Driving Force[J]. International Journal of Applied Mechanics, 2017, 9(1):179-190
[19] 宋少沪, 姚戈, 杨骁. 不可压饱和多孔Timoshenko梁动力响应的数学模型[J]. 固体力学学报, 2010, 31(4):397-405 SONG Shaohu, YAO Ge, YANG Xiao. Mathematical Model for Dynamics of Incompressible Saturated Poroelastic Timoshenko Beam[J]. Acta Mechanica Solida Sinica, 2010, 31(4):397-405(in Chinese)
相关文献:
1.刘雪梅, 邓子辰, 胡伟鹏.饱和多孔弹性杆热传导的广义多辛方法及其数值实现[J]. 西北工业大学学报, 2015,33(2): 265-270