论文:2020,Vol:38,Issue(4):733-739
引用本文:
胡展, 杨涓, 陈茂林, 于达仁, 朱悉铭. 基于三维PIC数值模拟的2 cm ECRIT推力控制计算[J]. 西北工业大学学报
HU Zhan, YANG Juan, CHEN Maolin, YU Daren, ZHU Ximing. Calculation on 2 cm ECRIT Thrust Regulation Based on 3D PIC Numerical Simulation Method[J]. Northwestern polytechnical university

基于三维PIC数值模拟的2 cm ECRIT推力控制计算
胡展1, 杨涓1, 陈茂林1, 于达仁2, 朱悉铭2
1. 西北工业大学 航天学院, 陕西 西安 710072;
2. 哈尔滨工业大学 能源科学与工程学院, 黑龙江 哈尔滨 150001
摘要:
无拖曳控制是空间引力波探测的关键技术,主要由微型推力器完成。微型电子回旋共振离子推力器(ECRIT)体积小、推力可调,可用于空间引力波的无拖曳控制。基于三维PIC数值模拟方法计算微型2 cm ECRIT的推力控制范围,分析其用于无拖曳控制系统的可行性。首先计算不同栅极孔径下的推力性能和栅极聚焦特性,获得合理栅极结构,再计算栅极电压、栅极前离子密度对推力器性能的影响,获得满足无拖曳控制要求的推力器性能参数范围。结果表明:减小栅极孔径能降低推力,但同时影响栅极聚焦效果;调节栅极前离子密度可大范围调节推力;在给定的栅极结构和栅前离子密度下,存在合适的栅极加速电压区间保证离子的良好聚焦。综合考虑推力性能和栅极聚焦特性,选择屏栅孔径0.6 mm、加速栅孔径0.34 mm的栅极,当栅极前离子密度分别为1×1017,0.7×1017,0.4×1017,0.2×1017 m-3时,通过调节加速电压,可实现5.05~141.44 μN的推力调节。此研究将为分析ECRIT应用于引力波探测的可行性奠定基础。
关键词:    无拖曳控制    电子回旋共振    束流引出    PIC数值模拟    推力计算   
Calculation on 2 cm ECRIT Thrust Regulation Based on 3D PIC Numerical Simulation Method
HU Zhan1, YANG Juan1, CHEN Maolin1, YU Daren2, ZHU Ximing2
1. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. School of Power Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Abstract:
Drag-free control is the key technology for space gravitational wave detection, which will be completed by miniature thruster. 2 cm Electron Cyclotron Resonance Ion Thruster (ECRIT) may be used for the drag-free control. Therefore, the 3D PIC method is used to estimate the thrust regulation of 2 cm ECRIT through simulating the property of ion extracting from the double-grid system. Through analyzing the thrust performance and grid focusing property under different grid apertures, the better grid structure is selected for the subsequent calculation. On this basis, the influence of grid voltage and the ion density on the performance of the thruster is analyzed. The result shows that reducing grid aperture can reduce the thrust, but it also affects the focusing property of the grid. Changing the ion density can adjust the thrust in a wide range. At given grid structure and ion density, there is a suitable grid accelerating voltage range to ensure the best ion focus characteristics. Considering the thrust performance and focusing characteristics, the grid structure with screen and accelerating grid aperture in 0.6 mm and 0.34 mm is selected. When the ion density is 1×1 017, 0.7×1 017, 0.4×1 017 and 0.2×1 017 m-3, the thrust can range from 5.05 to 141.44 μN through adjusting the grid accelerating voltage. This study can provide information for analyzing the possibility of the thruster application.
Key words:    drag-free control    electron cyclotron resonance    beam extraction    PIC numerical simulation    thrust calculation   
收稿日期: 2019-10-16     修回日期:
DOI: 10.1051/jnwpu/20203840733
基金项目: 国家自然科学基金(11875222)资助
通讯作者:     Email:
作者简介: 胡展(1998-),西北工业大学硕士研究生,主要从事ECRIT离子推力器研究。
相关功能
PDF(1926KB) Free
打印本文
把本文推荐给朋友
作者相关文章
胡展  在本刊中的所有文章
杨涓  在本刊中的所有文章
陈茂林  在本刊中的所有文章
于达仁  在本刊中的所有文章
朱悉铭  在本刊中的所有文章

参考文献:
[1] 胡明, 李洪银, 周泽兵. 无拖曳控制技术及其应用[J]. 载人航天, 2013, 19(2):61-69 HU M, LI H Y, ZHOU Z B. Drag-Free Control Technology and Its Applications[J]. Manned Spaceflight, 2013,19(2):61-69(in Chinese)
[2] FUNAKI I, NAKAYAMA Y, HORISAWA H, et al. Micro-Thruster Options for the Japanese Space Gravitational Wave Observatory Missions[C]//International Electric Propulsion Conference, 2011
[3] KOIZUMI H, KUNINAKA H. Performance of the Miniature and Low Power Microwave Discharge Ion Engine μ1[C]//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2010
[4] NAKAYAMA Y, FUNAKI I, KUNINAKA H. Sub-Milli-Newton Class Miniature Microwave Ion Thruster[J]. Journal of Propulsion and Power, 2007, 23(2):495-499
[5] IZUMI T, KOIZUMI H, YAMAGIWA Y, et al. Performance of Miniature Microwave Discharge Ion Thruster for Drag-Free Control[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Atlanta, Georgia, 2012
[6] 夏旭, 杨涓, 金逸舟,等. 磁路和天线位置对2 cm电子回旋共振离子推力器性能影响的实验研究[J]. 物理学报, 2019, 68(23):235202 XIA Xu, YANG Juan, JIN Yizhou, et al. Experimental Study of Magnetic Circuit and Antenna Position Influence on the Ion Beam Extraction and Coupling Voltage of 2 cm ECRIT[J]. Acta Physics Sinica, 2019, 68(23):235202(in Chinese)
[7] 汤明杰,杨涓,金逸舟, 等. 微型电子回旋共振离子推力器离子源结构优化实验研究[J]. 物理学报, 2015, 64(21):215202 TANG Mingjie, YANG Juan, JIN Yizhou, et al. Experimental Optimization in Ion Source Configuration of a Miniature Electron Cyclotron Resonance Ion Thruster[J]. Acta Physica Sinica, 2015, 64(21):215202(in Chinese)
[8] SUN A B, MAO G W, YANG J, et al. Particle Simulation of Three-Grid ECR Ion Thruster Optics and Erosion Prediction[J]. Plasma Science and Technology, 2010, 12(2):240-247
[9] FARNELL C C, WILLIAMS J D, WILBUR P J. NEXT Ion Optics Simulation via FFX[C]//39th AIAA, ASME, SAE, and ASEE Joint Propulsion Conference and Exhibit, 2003
[10] GOEBEL D M, KATZ I. Fundamentals of Electric Propulsion:Ion and Hall Thrusters[M]. New York, John Wiley & Sons Inc, 2008, 100-141
[11] 刘金声. 离子束技术及应用[M]. 北京:国防工业出版社, 1995 LIU Jinsheng. Ion Beam Technology and Application[M]. Beijing:National Defense Industry Press, 1995(in Chinese)
[12] 温正, 王敏, 仲小清. 多任务模式电推进技术[J]. 航天器工程, 2014, 23(1):118-123 WEN Zheng, WANG Min, ZHONG Xiaoqing. Multitask Mode Electric Propulsion Technologies[J]. Spacecraft Engineering, 2014, 23(1):118-123(in Chinese)
相关文献:
1.黄文斌, 杨涓, 孟海波, 夏旭, 付瑜亮, 胡展.结构和工质对ECR离子源引出束流的影响规律研究[J]. 西北工业大学学报, 2019,37(6): 1095-1101