论文:2020,Vol:38,Issue(3):657-667
引用本文:
吴文海, 郭晓峰, 周思羽. 综合飞行器管理系统(IVMS)研究综述[J]. 西北工业大学学报
WU Wenhai, GUO Xiaofeng, ZHOU Siyu. Overview of Integrated Vehicle Management System[J]. Northwestern polytechnical university

综合飞行器管理系统(IVMS)研究综述
吴文海, 郭晓峰, 周思羽
海军航空大学(青岛校区) 航空仪电控制工程与指挥系, 山东 青岛 266041
摘要:
现代高新技术条件下空战模式对战机作战性能和机载系统综合化设计提出了更高的要求,促使综合飞行器管理技术出现,并使其成为先进战机作战任务管理和飞行器管理的关键技术。文章系统性介绍了综合飞行器管理系统的技术背景及发展状况,给出了综合飞行器管理系统的结构框架,将其分为感知层、决策层和执行层,并分析了各层级的功能作用,分别介绍了系统构架和软件系统结构;阐述了系统的基本功能及关键技术包括态势感知与评估、任务航迹规划、综合航行驾驶、自动攻击导引、健康管理与预测以及智能人机交互六方面,探讨了综合飞行器管理系统未来的主要发展方向。
关键词:    综合飞行器管理    发展背景    系统层次架构    基本功能   
Overview of Integrated Vehicle Management System
WU Wenhai, GUO Xiaofeng, ZHOU Siyu
Department of Aviation Control and Command, Qingdao Branch, Naval Aeronautics University, Qingdao 266041, China
Abstract:
Under the modern high-tech condition, the demand of air combat has been stricter on the combat performance and the integration of fighter,which impels the application of integrated vehicle management technology and makes it become the core technology of the advanced fighter about the mission management and vehicle management. From an overview of tactical flight management system's technical background and the state of development, this paper systematically introduces the issues, including the development process & history, architecture framework of the integrated vehicle management system (IVMS) which divided into perception layers, decision layer and execution layer, and function system architecture and software system architecture. Through a comprehensive analysis for the functions of each level, comprehensively expounds the basic function and key technology of IVMS which included situation awareness and assessment, mission path planning, integrated navigation, automatic attack guidance, health management and prognostic and intelligent pilot-vehicle interface, and the future development directions are also discussed.
Key words:    integrated vehicle management system    development background    system architecture    basic function   
收稿日期: 2019-01-16     修回日期:
DOI: 10.1051/jnwpu/20203830657
基金项目: 国家重点研发计划(2018YFC0806900)资助
通讯作者:     Email:
作者简介: 吴文海(1962-),海军航空大学教授、博士生导师,主要从事精确制导与控制研究。
相关功能
PDF(1416KB) Free
打印本文
把本文推荐给朋友
作者相关文章
吴文海  在本刊中的所有文章
郭晓峰  在本刊中的所有文章
周思羽  在本刊中的所有文章

参考文献:
[1] KLAFIN J. Tactical Flight Management System Design[C]//Aircraft Design, Systems and Technology Meeting, 1983
[2] COCHRAN K G. Artificial Intelligence Techniques Applied to Vehicle Management System Diagnostics[C]//Digital Avionics Systems Conference, 1991
[3] Advisory Group for Aerospace Research & Development. Integrated Vehicle Management Systems[R]. AGARD Advisory Report 343, 1996
[4] 吴文海. 飞行综合控制系统[M]. 北京:航空工业出版社, 2007:195-197 WU Wenhai. Integrated Flight Conrtrol System[M]. Beijing:Aviation Industry Press, 2007:195-197(in Chinese)
[5] COLLINSON R P G. 飞行综合驾驶系统导论[M]. 吴文海, 程传金,译. 北京:航空工业出版社,2009:284-292 COLLINSON R P G. Introduction to Avionics System[M]. WU Wenhai, CHENG Chuanjin, Translator. Beijing:Aviation Industry Press, 2009:284-292(in Chinese)
[6] 申功璋,高金源,张津. 飞机综合控制与飞行管理[M]. 北京:北京航空航天大学出版社, 2008:250-255 SHEN Gongzhang, GAO Jinyuan, ZHANG Jin. Aircraft Integrated Control and Flight Management[M]. Beijing:Beihang University Press, 2008:250-255(in Chinese)
[7] 张喜民,徐奡. 先进战斗机的综合飞行器管理系统综述[J]. 电光与控制, 2011, 18(11):1-6 ZHANG Ximin, XU Ao. On Integrated Vehicle Management System of Advanced Fighters[J]. Electronics Optics & Control, 2011, 18(11):1-6(in Chinese)
[8] 罗巧云. 第五代战斗机在未来空战中的应用[J]. 国防科技, 2017(4):57-62 LUO Qiaoyun. Review on the Operational Application of the Fifth Generation Fighter in Future Air Combat[J]. National Defense Science & Technology, 2017(4):57-62(in Chinese)
[9] PARIS D E, TREVINO L. Integrated Intelligent Vehicle Management Framework[C]//2008 IEEE Aerospace Conference, Big Sky, MT, 2008:1-7
[10] BLAKELOCK J H. Design and Analysis of a Digitally Controlled Integrated Flight/Fire Control System[J]. Journal of Guidance Control & Dynamics, 1983, 6(4):251-257
[11] PAHLE J W, POWERS B, REGENIE V, et al. Research Flight-Control System Development for the F-18 High Alpha Research Vehicle[R]. NASA-1991-0012818
[12] CANTER D E, GROVES A W. X-31 Post-Stall Envelope Expansion and Tactical Utility Testing[C]//AIAA 7th Biennial Flight Test Conference, 1994:122-133
[13] KNOX C E, MEYER D W. Integrated Flight/Fire/Propulsion Controls[C]//AIAA, AHS, ASEE Aircraft Design Systems and Operations Meeting, 1984:1-5
[14] COMEGYS G L. Tactical Flight Management-an Overview[C]//Aerospace Congress & Exposition, 1984:1-8
[15] WANG G, GU Q. Research on Distributed Integrated Modular Avionics System Architecture Design and Implementation[C]//IEEE/AIAA 32nd Digital Avionics Systems Conference, East Syracuse, NY, 2013:7D6-1-7D6-10
[16] KIM N H, CHOI J H, DAWN A. Prognostics and Health Management of Engineering Systems[M]. Cham, Switzerland:Springer International Publishing, 2017:2-4
[17] 张宝珍, 王萍, 尤晨宇. 国外飞机预测与健康管理技术发展计划综述[J]. 计算机测量与控制, 2016, 24(6):1-7 ZHANG Baozhen, WANG Ping, YOU Chenyu. Overview of Oversea Prognostics and Health Management Technologies Development Projects[J]. Computer Measurement & Control, 2016, 24(6):1-7(in Chinese)
[18] Santamaria E, Royo P, Barrado C, et al. An Integrated Mission Management System for UAS Civil Applications[C]//AIAA Guidance, Navigation, & Control Conference, 2009
[19] GAO L, WU W, JIA L. Design Methodology of Vehicle Management System for Unmanned Combat Aerial Vehicle[C]//Asia-Pacific International Symposium on Aerospace Technology, 2010
[20] TALLEY D, MAVRIS D. An Adaptive Environment for the Identification of Morphing UCAV Mission Requirements[C]//AIAA Aerospace Sciences Meeting & Exhibit, 2013
[21] GUNETTI P, DODD T, THOMPSON H. Simulation of a Soar-Based Autonomous Mission Management System for Unmanned Aircraft[J]. Journal of Aerospace Computing Information & Communication, 2013, 10(2):53-70
[22] FENG Z, LU H, JIANG W. A Reconfigurable Mission Management System Based on Modular Framework for Micro UAVs[C]//Guidance, Navigation & Control Conference, 2015
[23] THEISSING N, SCHULTE A. Intent-Based UAV Mission Management Using an Adaptive Mixed-Initiative Operator Assistant System[C]//AIAA Infotech@Aerospace Conference, 2013
[24] ROYO P, BARRADO C, SALAMI E, et al. Towards the Automation of the UAS Mission Management[C]//Digital Avionics Systems Conference, 2013
[25] 罗畅, 王洁, 王鹏飞, 等. 无人作战飞机智能化及其自主攻击研究[J]. 飞航导弹, 2015(8):18-24 LUO Chang, WANG Jie, WANG Pengfei, et al. Research on Intelligence and Autonomous Attack of Unmanned Combat Aerial Vehicle[J]. Aerodynamic Missile Journal, 2015(8):18-24(in Chinese)
[26] 王国庆, 谷青范, 王淼,等. 新一代综合化航空电子系统构架技术研究[J]. 航空学报, 2014, 35(6):1473-1486 WANG Guoqing, GU Qingfan, WANG Miao, et al. Research on the Architecture Technology for New Generation Integrated Avionics System[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6):1473-1486(in Chinese)
[27] WANG G Q, GU Q F. Research on Distributed Integrated Modular Avionics System Architecture Design and Implementation[C]//Digital Avionics Systems Conference, 2014
[28] WANG H, NIU W. A Review on Key Technologies of the Distributed Integrated Modular Avionics System[J]. International Journal of Wireless Information Networks, 2018, 25(3):358-369
[29] WANG Y S, SAVAGE S, LEI H. The Architecture of Airborne Datalink System in Distributed Integrated Modular Avionics[C]//2016 Integrated Communications Navigation and Surveillance, 2016
[30] GU Q, WANG G, WU J, et al. Dynamic Reconfiguration Mechanism for Distributed Integrated Modular Avionics System[C]//AIAA Aviation Technology, Integration, & Operations Conference, 2015
[31] HAYRE A, DULL T, MEYN F. The ATF YF-23 Vehicle Management System[J]. Applied Mechanics & Materials, 2013(368/369/370):441-444
[32] MOIR I, SEABRIDGE A G. Management of Utility Systemin the Experimental Aircraft Programmer[J]. Aerospace,1986(9):28-34
[33] BURKHARD A, DEITRICH R. Joint Strike Fighter Integrated Subsystems Technology, a Demonstration for Industry, by Industry[J]. Journal of Aircraft, 2015, 40(5):906-913
[34] 刘巍. 美国国防领域商用现货软件的应用分析[J]. 计算机光盘软件与应用, 2014(4):73-75 LIU Wei. Application Analysis of Commercial Off-the-Shelf Software in the Field of American Defense[J]. Computer CD Software and Applications, 2014(4):73-75(in Chinese)
[35] GUNETTI P, DODD T, THOMPSON H. A Software Architecture for Autonomous UAV Mission Management and Control[C]//AIAA Infotech@Aerospace Conference, 2013
[36] 褚文奎, 张凤鸣, 樊晓光. 综合模块化航空电子系统软件体系结构综述[J]. 航空学报, 2009, 30(10):1912-1917 CHU Wenkui, ZHANG Fengming, FAN Xiaoguang. Overview on Software Architecture of Integrated Modular Avionic Systems[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10):1912-1917(in Chinese)
[37] WANG Y, WANG J Y, WANG L. A Transformation-Based Integrated Modular Avionics Software Model Construction Approach[J]. Applied Mechanics & Materials, 2014, 668/669:343-346
[38] WANG G. Integration Technology for Avionics System[C]//Digital Avionics Systems Conference, 2012
[39] NGUYEN T, LIM C P, DUY NGUYEN N, et al. A Review of Situation Awareness Assessment Approaches in Aviation Environments[J]. IEEE Systems Journal, 2019, 13(3):3590-3603
[40] DALINGER I, SMUROV M, SUKHIKH N, et al. Pilot's Situational Awareness and Methods of its Assessment[J]. Indian Journal of Science and Technology, 2016, 9(46):1-5
[41] SIYU Z, WENHAI W, SHENGMING Z, et al. A New Situation Assessment Model for Modern Within-Visual-Range Air Combat[J]. Procedia Engineering, 2012, 29:339-343
[42] 朱丰,胡晓峰. 基于深度学习的战场态势评估综述与研究展望[J]. 军事运筹与系统工程, 2016, 30(3):22-27 ZHU Feng, HU Xiaofeng. Review and Research Prospect of Battlefield Situation Assessment Based on Deep Learning[J]. Military Operations Research and Systems Engineering, 2016, 30(3):22-27(in Chinese)
[43] KOOPMANSCHAP R, HOOGENDOORN M, ROESSINGH J J. Tailoring a Cognitive Model for Situation Awareness Using Machine Learning[J]. Applied Intelligence, 2015, 42(1):36-48
[44] SCHNEIDER V, MUMM N C, HOLZAPFEL F. Trajectory Generation for an Integrated Mission Management System[C]//IEEE International Conference on Aerospace Electronics & Remote Sensing Technology, 2016
[45] JI W F, XU H F, WANG G Y, et al. Path Planning under Dynamic Threat Environment[J]. Applied Mechanics and Materials, 2014, 543/544/545/546/547:1790-1794
[46] FU X, GAO X. Effective Real-Time Unmanned Air Vehicle Path Planning in Presence of Threat Netting[J]. Journal of Aerospace Information Systems, 2014, 11(4):170-177
[47] KAMYAR R, TAHERI E. Aircraft Optimal Terrain/Threat-Based Trajectory Planning and Control[J]. Journal of Guidance Control and Dynamics, 2014, 37(2):466-483
[48] MAO H, FENG H, ZHANG F, et al. Reconnaissance and Strike Integrated UAV's Path Planning in Autonomous Attack[C]//2016 IEEE Chinese Guidance, Navigation and Control Conference, 2016
[49] ZHANC Y, CHEN J, SHEN L C. Real-Time Trajectory Planning for UCAV Air-to-Surface Attack Using Inverse Dynamics Optimization Method and Receding Horizon Control[J]. Chinese Journal of Aeronautics, 2013,26(4):1038-1056
[50] GASPARETTO A, BOSCARIOL P, LANZUTTI A, et al. Path Planning and Trajectory Planning Algorithms:a General Overview[J]. Motion and Operation Planning of Robotic Systems, 2015, 29:3-27
[51] RADMANESH M, KUMAR M, GUENTERT P, et al. Overview of Path Planning and Obstacle Avoidance Algorithms for UAVs:a Comparative Study[J]. Unmanned Systems, 2018, 6(2):95-118
[52] THEIS J, PFIFER H, BALAS G, et al. Integrated Flight Control Design for a Large Flexible Aircraft[C]//American Control Conference, 2015
[53] SCHIERMAN J D, SCHMIDT D K. Analysis of Airframe and Engine Control Interactions and Integrated Flight/Propulsion Control[J]. Journal of Guidance Control & Dynamics, 2015, 15(6):1388-1396
[54] 周思羽, 吴文海, 张楠,等. 自主空战机动决策方法综述[J]. 航空计算技术, 2012, 24(1):27-31 ZHOU Siyu, WU Wenhai, ZHANG Nan, et al. Overview of Autonomous Air Combat Maneuver Decision[J]. Aeronautical Computing Technique, 2012, 24(1):27-31(in Chinese)
[55] LUO C, WANG J, HUANG H, et al. Integrated Guidance and Control Based Air-to-Air Autonomous Attack Occupation of UCAV[J]. Mathematical Problems in Engineering, 2016, 9:1-18
[56] ZHANG G, JIAN W, ZHI L, et al. A Integrated Vehicle Health Management Framework for Aircraft-A Preliminary Report[C]//Prognostics & Health Management, 2015
[57] 常琦, 袁慎芳. 飞行器综合健康管理(IVHM)系统技术现状及发展[J]. 系统工程与电子技术, 2009, 31(11):2652-2657 CHANG QI, YUAN Shenfang. Overview of Integrated Vehicle Health Management(IVHM) Technology and Development[J]. Systems Engineering and Electronics, 2009, 31(11):2652-2657(in Chinese)
[58] LI X, WANG H, YONG S, et al. Integrated Vehicle Health Management in the Aviation Field[C]//Prognostics & System Health Management Conference, 2017
[59] HEATON A, VERMA R, FAN I S, et al. Defining Integrated Vehicle Health Management Requirements for Unmanned Aircraft Using a QFD Approach[C]//AIAA Infotech, 2013
[60] 吴文海,张源原,周思羽, 等. 飞行员助手项目综述[J]. 航空学报, 2016, 37(12):3563-3577 WU Wenhai, ZHANG Yuanyuan, ZHOU Siyu, et al. Overview of Pilot's Associate Program[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3563-3577(in Chinese)
[61] 吴文海, 张源原, 刘锦涛,等. 新一代智能座舱总体结构设计[J]. 航空学报, 2016, 37(1):290-299 WU Wenhai, ZHANG Yuanyuan, LIU Jintao, et al. Overall Architecture Design of New Generation Intelligent Cockpit[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):290-299(in Chinese)
[62] MAXWELL K, DAVIS J. Artificial Intelligence Implications for Advanced Pilot/Vehicle Interface Design[C]//Digital Avionics Systems Conference, 2013
[63] XIE X, CHENG H. Object Detection of Armored Vehicles Based on Deep Learning in Battlefield Environment[C]//International Conference on Information Science & Control Engineering, 2017
[64] 金欣. 指挥控制智能化现状与发展[J]. 指挥信息系统与技术, 2017(4):10-18 JIN Xin. Status and Development of Intelligent Command and Control[J]. Command Information System and Technology, 2017(4):10-18(in Chinese)