论文:2020,Vol:38,Issue(3):558-570
引用本文:
李立, 白俊强, 何小龙. 基于阻力分解方法的气动特性及优化设计研究[J]. 西北工业大学学报
LI Li, BAI Junqiang, HE Xiaolong. Aerodynamic Design and Shape Optimization with the Far-Field Drag Decomposition Approach[J]. Northwestern polytechnical university

基于阻力分解方法的气动特性及优化设计研究
李立1, 白俊强1,2, 何小龙3
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 西北工业大学 无人系统技术研究院, 陕西 西安 710072;
3. 中国运载火箭技术研究院, 北京 100076
摘要:
在气动外形设计研究中,设计构型的阻力预测一直以来都是一项极具挑战的任务,而对于越来越复杂的构型而言,更是希望能够得到高准确度和高可信度的阻力数值结果。为了能够实现更加高精确度的阻力预测方法,并有针对性地开展气动外形设计研究,首先对比和分析了近场法和远场法进行阻力预测的特点,并提炼出现有主流的几种远场法关于轴向速度损失量(axial velocity defect)公式的优劣势和差异,进而提出了关于轴向速度损失量的改进方法,建立了改进的基于远场法的阻力预测方法和阻力分解方法。其次,在阻力分解方法建立的过程中,由于需要对阻力区域的选择划分进行判断和决定,因此开展了相关参数敏感性的讨论分析。然后,基于构造的阻力分解方法,针对Common Research Model(CRM)翼身组合体构型开展了气动特性研究,结果表明文中的方法不仅可以充分保证力系数的预测精度,还可有效分析不同阻力分量及其对总阻力的影响和具体的贡献占比。最后,将改进的阻力分解方法融入基于梯度的气动外形优化设计系统,针对CRM构型进行了气动外形优化设计,优化结果不仅可通过阻力区域识别函数直观感受阻力分量可视化区域的详细变化情况,还可更加精确地得到优化构型去除伪阻力以后的总阻力与升阻比。
关键词:    阻力预测    阻力分解    轴向速度损失量    气动特性研究    气动优化设计   
Aerodynamic Design and Shape Optimization with the Far-Field Drag Decomposition Approach
LI Li1, BAI Junqiang1,2, HE Xiaolong3
1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710072, China;
3. China Academy of Launch Vehicle Technology, Beijing 100076, China
Abstract:
In the aerodynamic shape design, the drag prediction has always been an extremely challenging mission for the exploration of a configuration. As for the more complex configurations, it is especially desired to the availability of a highly accurate and reliable aerodynamic numerical solution. For improving the drag prediction accuracy and promoting the aerodynamic shape designs, firstly, the characteristics of drag prediction based on far-field drag method and near-field drag method is analyzed and compared. Also, the merits and demerits of defining axial velocity defect with the current main far-field drag prediction approaches is summarized, which promotes the building of the improved method of axial velocity defect and the improved far-field drag prediction and decomposition approach. Moreover, during the establishment of the drag decomposition method, it is necessary to judge and decide on the selection of the drag region. Therefore, the discussions on the sensitivity of the relevant parameters are fulfilled. Furthermore, based on the far-field drag prediction and decomposition method constructed, the aerodynamic performance research of Common Research Model wing-body configuration is launched. The results show that it can effectively observe and analyze the changes in drag components, their impact on the total drag and the contribution percentage. Finally, combining the far-field drag prediction and decomposition method proposed in this paper with a gradient-based aerodynamic shape optimization design system, the aerodynamic shape optimization designs are studied with CRM wing-body configuration. The results can not only directly analyze the detailed change of the visualized drag region, but also can obtain the more accurate total drag and lift-to-drag ratio of the optimized configuration by removing the spurious drag.
Key words:    drag prediction    drag decomposition    axial velocity defect    aerodynamic analysis    aerodynamic shape optimization   
收稿日期: 2019-06-25     修回日期:
DOI: 10.1051/jnwpu/20203830558
基金项目: 国家"973"计划(2014CB744804)资助
通讯作者:     Email:
作者简介: 李立(1992-),西北工业大学博士研究生,主要从事飞行器总体气动布局设计与飞行器气动优化设计研究。
相关功能
PDF(3812KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李立  在本刊中的所有文章
白俊强  在本刊中的所有文章
何小龙  在本刊中的所有文章

参考文献:
[1] GARIEPY M, MALOUIN B, TREPANIER J Y, et al. Far-Field Drag Decomposition Method Applied to the DPW-5 Test Case Results[C]//AIAA Applied Aerodynamics Conference, 2006
[2] TOUBIN H, BAILLY D. Development and Application of a New Unsteady Far-Field Drag Decomposition Method[J]. AIAA Journal, 2015, 53(11):77-82
[3] HUE D, ESQUIEU S. Computational Drag Prediction of the DPW4 Configuration Using the Far-Field Approach[J]. Journal of Aircraft, 2012, 48(5):1658-1670
[4] PAPARONE L, TOGNACCINI R. Computational Fluid Dynamics-Based Drag Prediction and Decomposition[J]. AIAA Journal, 2003, 41(9):1647-1657
[5] BETZ A. A Method for the Direct Determination of Wing-Section Drag[J]. Technical Report Archive & Image Library, 1925:42-44
[6] Von KÁRMÁN T, BURGERS J M. General Aerodynamic Theory-Perfect Fluids[J]. Aerodynamic Theory, 1936, 16:61
[7] Van der VOOREN J, SLOOFF J W. CFD-based Drag Prediction:State-of-the-Art, Theory, Prospects[J]. Lecture Notes of AIAA Professional Studies Series, 1990:23-24
[8] DESTARAC D, VOOREN J V D. Drag/Thrust Analysis of Jet-Propelled Transonic Transport Aircraft, Definition of Physical Drag Components[J]. Aerospace Science & Technology, 2004, 8(6):545-556
[9] DESTARAC D. Far-Field/Near-Field Drag Balance and Applications of Drag Extraction in CFD[C]//CFD-Based Aircraft Drag Prediction and Reduction, Belgium, 2003
[10] GARIEPY M, TREPANIER J Y, MALOUIN B. Generalization of the Far-Field Drag Decomposition Method to Unsteady Flows[J]. AIAA Journal, 2013, 51(6):1309-1319
[11] GARIÉPY M, TRÉPANIER J Y, MASSON C. Convergence Criterion for a Far-Field Drag Prediction and Decomposition Method[J]. AIAA Journal, 2015, 49(12):2814-2817
[12] MARONGIU C, TOGNACCINI R, UENO M. Lift and Lift-Induced Drag Computation by Lamb Vector Integration[J]. AIAA Journal, 2013, 51(6):1420-1430
[13] SNYDER T, POVITSKY A. Far-Field Induced Drag Prediction Using Vorticity Confinement Technique[J]. Journal of Aircraft, 2014, 51(6):1953-1958
[14] 陈真利,张彬乾. 基于尾迹积分的阻力计算方法研究[J]. 空气动力学学报, 2009, 27(3):329-334 CHEN Zhenli, ZHANG Benqan. Drag Prediction Method Investigation Basing on the Wake Integral[J]. Acta Aerodynamica Sinica, 2009, 27(3):329-334(in Chinese)
[15] 刘杰, 朱自强, 陈泽民, 等. 基于欧拉方程的尾迹面法气动力计算[J]. 航空学报, 2005, 26(4):417-421 LIU Jie, ZHU Zhiqiang, CHEN Zemin, et al. Wake Integration Method for Aerodynamics Evaluation Using Euler Equations[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(4):417-421(in Chinese)
[16] 李杰, 周洲. 翼身组合体气动力计算研究[J]. 力学季刊, 2008, 29(3):365-370 LI Jei, ZHOU Zhou. A Numerical Method Research on Wing Body Configurations[J]. Chinese Quarterly of Mechanics, 2008, 29(3):365-370(in Chinese)
[17] UENO M, YAMAMOTO K, TANAKA K, et al. Far-Field Drag Analysis of NASA Common Research Model Simulation[C]//AIAA Computational Fluid Dynamics Conference, 2013
[18] 陈颂. 基于梯度的气动外形优化设计方法及应用[D]. 西安:西北工业大学, 2016 CHEN Song. Gradient Based Aerodynamic Shape Optimization Design and Applications[D]. Xi'an:Northwestern Polytechnical University, 2016
[19] 李立, 白俊强, 郭同彪, 等. 考虑放宽静稳定度的民用客机气动优化设计[J]. 航空学报, 2017, 38(9):121112 LI Li, BAI Junqiang, GUO Tongbiao, et al. Aerodynamic Optimization Design for Civil Aircraft Considering Relaxed Static Stability[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9):121112(in Chinese)
[20] 李立, 白俊强, 郭同彪, 等. 基于伴随方法的超声速客机机翼气动优化设计[J]. 西北工业大学学报, 2017,35(5):843-849 LI Li, BAI Junqiang, GUO Tongbiao, et al. Aerodynamic Optimization Design of the Supersonic Aircraft Based on Discrete Adjoint Method[J]. Journal of Northwestern Polytechnical University, 2017,35(5):843-849(in Chinese)