论文:2020,Vol:38,Issue(3):465-470
引用本文:
顾梦凡, 宋保维. 基于大涡模拟的方柱绕流噪声特性研究[J]. 西北工业大学学报
GU Mengfan, SONG Baowei. Aeroacoustic Noise Characteristics of Flow around a Square Column Based on Large Eddy Simulation[J]. Northwestern polytechnical university

基于大涡模拟的方柱绕流噪声特性研究
顾梦凡, 宋保维
西北工业大学 航海学院, 陕西 西安 710072
摘要:
采用大涡模拟结合Ffowcs Williams-Hawkings(FW-H)方程声类比的方法,研究了方柱绕流噪声特性,将基准模型数值计算结果与前人试验结果进行对比,并分析方柱绕流噪声辐射特性以及流速和流向对声场的影响规律。研究表明:基准模型数值计算结果与试验值较为一致,说明了文中计算方法的适用性;在约110°和250°的圆周方向上的存在偶极子噪声模态,且随着距离的增大,噪声辐射声压级逐渐减小,噪声指向性变得逐渐不明显;随着流速的增大,涡脱落频率逐渐增大,且涡脱落频率处的声压级也随之增大,辐射噪声声压级在频域上呈增大趋势;流向的改变使得方柱绕流辐射噪声的声场指向性变得复杂。
关键词:    方柱扰流    气动噪声    大涡模拟    声类比    偶极子   
Aeroacoustic Noise Characteristics of Flow around a Square Column Based on Large Eddy Simulation
GU Mengfan, SONG Baowei
School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Large eddy simulation and Ffowcs Williams-Hawkings (FW-H) equation were used to investigate the aeroacoustic noise characteristics of flow around a square column. After verifying the accuracy of the numerical model, the influences of flow velocity and flow direction on noise field characteristics are discussed. The noise prediction result of the base model was in good agreement with the experiment data in the vortex-shedding frequency and in the general trend. It was shown that there were typical dipole noise sources in the direction of 110° and 250°, respectively. With the increase of distance, the total sound pressure level was decreased and the directionality of the noise field is becoming worse. The results showed that the vortex-shedding frequency was increased with the increase of flow velocity, and the corresponding sound pressure level was also raised. The change of flow direction would make the directionality of noise flied more complicated, which is related to the complexity of flow field.
Key words:    flow around a square column    aerodynamic noise    large eddy simulation    acoustic analogy    dipole noise    sound pressure level    directionality   
收稿日期: 2019-08-15     修回日期:
DOI: 10.1051/jnwpu/20203830465
通讯作者:     Email:
作者简介: 顾梦凡(1978-),西北工业大学博士研究生,主要从事水下航行器设计研究。
相关功能
PDF(1826KB) Free
打印本文
把本文推荐给朋友
作者相关文章
顾梦凡  在本刊中的所有文章
宋保维  在本刊中的所有文章

参考文献:
[1] 王掩刚, 陈俊旭, 先松川. 基于POD方法的二维方柱低雷诺数绕流流场分析研究[J]. 西北工业大学学报, 2014, 32(4):612-617 WANG Yangang, CHEN Junxu, XIAN Songchuan. Analysis of Square Cylinder Unsteady Flow at Low Reynolds Number with POD Method[J]. Journal of Northwestern Polytechnical University, 2014, 32(4):612-617(in Chinese)
[2] HUANG Q G, PAN G. On the Hydrodynamics of Three In-Line Square Cylinders in a Uniform Flow[J]. Modern Physics Letters B, 2019, 33(6):1950066
[3] LIGHTHILL J. Waves in Fluids[M]. Cambridge:Cambridge University Press, 1978:23-40
[4] CAI J C, PAN J, KRYZHANOVSKYI A. A Numerical Study of Transient Flow around a Cylinder and Aerodynamic Sound Radiation[J]. Thermophysics and Aeromechanics, 2018, 25(3):331-346
[5] DANG Z, MAO Z, TIAN W. Reduction of Hydrodynamic Noise of 3D Hydrofoil with Spanwise Microgrooved Surfaces Inspired by Sharkskin[J]. Journal of Marine Science and Engineering, 2019, 7(5):136
[6] TABRIZI A B, WU B. The Role of Compressibility in Computing Noise Generated at a Cavitating Orifice[J]. International Journal of Aeroacoustics, 2019, 18(1):73-91
[7] ESCOBAR M, ALI I, HAHN C, et al. Numerical and Experimental Investigation on Flow Induced Noise from a Square Cylinder[C]//10th AIAA/CEAS Aeroacoustics Conference, 2004:3004
[8] OCTAVIANTY R, ASAI M. Effects of Short Splitter Plates on Vortex Shedding and Sound Generation in Flow Past Two Side-By-Side Square Cylinders[J]. Experiments in Fluids, 2016, 57(9):143
[9] CHEN L, MACGILLIVRAY I R. Prediction of Trailing-Edge Noise Based on Reynolds-Averaged Navier-Stokes Solution[J]. AIAA Journal, 2014, 52(12):2673-2682
[10] WEINMANN M, SANDBERG R D, DOOLAN C. Tandem Cylinder Flow and Noise Predictions Using a Hybrid RANS/LES Approach[J]. International Journal of Heat and Fluid Flow, 2014, 50:263-278
[11] MORATILLA-VEGA M A, XIA H, PAGE G J. A Coupled LES-APE Approach for Jet Noise Prediction[C]//Inter-Noise and Noise-Con Congress and Conference Proceedings, 2017:3946-3957
[12] JUAN H, WEI C, SONGPIN W U. Influence of Cavity Shape on Aerodynamic Noise by a Hybrid LES-FWH Method[J]. Applied Mechanics & Materials, 2014, 543:358-361
[13] DANG Z, MAO Z, SONG B, et al. Noise Characteristics Analysis of the Horizontal Axis Hydrokinetic Turbine Designed for Unmanned Underwater Mooring Platforms[J]. Journal of Marine Science and Engineering, 2019, 7(12):465
[14] WILLIAMS J E F, HAWKINGS D L. Sound Generation by Turbulence and Surfaces in Arbitrary Motion[J]. Philosophical Transactions of the Royal Society of London:Series A, Mathematical and Physical Sciences, 1969, 264(1151):321-342
[15] FLUENT Theory Guide[M]. Canonsburg, PA:ANSYS Inc, 2011
[16] 司海青, 朱卫军. 气动噪声计算方法及其应用[M]. 北京:科学出版社,2017:82-87 SI Haiqing, ZHU Weijun. Aerodynamic Noise Calculating Method and Its Application[M]. Beijing:Science Press, 2017:82-87(in Chinese)
相关文献:
1.许飞, 贺尔铭.飞机环控管道阀门气动噪声产生机理及其影响因素分析[J]. 西北工业大学学报, 2017,35(4): 608-614
2.刘兴强, 黄文超, 李红丽.某型飞机前起落架噪声特性研究[J]. 西北工业大学学报, 2016,34(3): 456-459