论文:2020,Vol:38,Issue(2):309-318
引用本文:
李樾, 韩维, 陈清阳, 张勇. 基于改进的速度障碍法的有人/无人机协同系统三维实时避障方法[J]. 西北工业大学学报
LI Yue, HAN Wei, CHEN Qingyang, ZHANG Yong. Real-Time Obstacle Avoidance for Manned/Unmanned Aircraft Cooperative System Based on Improved Velocity Obstacle Method[J]. Northwestern polytechnical university

基于改进的速度障碍法的有人/无人机协同系统三维实时避障方法
李樾1, 韩维1, 陈清阳2, 张勇1
1. 海军航空大学 航空基础学院, 山东 烟台 264001;
2. 国防科技大学 空天科学学院, 湖南 长沙 410073
摘要:
为适应当前智能体自主化水平,同时发挥多智能体在空战中的优势,有人/无人机协同系统的作战形式逐渐成为研究热点。针对协同系统在三维空间内的实时避障问题,首先,在传统速度障碍法的基础上,建立三维机动障碍的模型;其次通过设定系统遇障时的通行法则,选择飞行模式,进而确定最佳的避障平面及航迹;最后,通过3组仿真分别校验避障平面的差异性、单机躲避机动性障碍的可行性以及协同系统整体避障的有效性。仿真结果表明,该方法能安全快速地实现有人/无人机协同系统对三维机动障碍的躲避。
关键词:    有人/无人机    速度障碍法    三维空间    避障平面    实时避障   
Real-Time Obstacle Avoidance for Manned/Unmanned Aircraft Cooperative System Based on Improved Velocity Obstacle Method
LI Yue1, HAN Wei1, CHEN Qingyang2, ZHANG Yong1
1. College of Basic Science for Aviation, Naval Aviation University, Yantai 264001, China;
2. College of Aeronautics and Astronautics, National University of Defense Technology, Changsha 410073, China
Abstract:
To adapt the autonomous level of agents in current, and to perform the advantages of multi-agent in air combat, the form of manned/unmanned aircraft cooperative system has gradually become a hot topic. To solve the issue of three-dimensional (3D) real-time obstacle avoidance, the 3D maneuvering obstacle model is established firstly based on the traditional velocity obstacle method. Then the flight mode is selected and the optimal obstacle avoidance plane is determined by setting the Right-of-way rules when the system encountering obstacles. Finally, the difference of obstacle avoidance plane, the feasibility of avoiding maneuvering obstacle and the effectiveness of obstacle avoidance of cooperative system are verified by several flight simulations. The results show that the proposed method can realize the avoidance of 3D maneuvering obstacle for manned/unmanned aircraft cooperative system safely and efficiently.
Key words:    manned/unmanned aircraft    velocity obstacle method    three-dimensional space    obstacle avoidance plane    real-time avoidance    flight simulation    cooperative system   
收稿日期: 2019-04-08     修回日期:
DOI: 10.1051/jnwpu/20203820309
基金项目: 国家自然科学基金(61703414)与国防科技基金(3101047)资助
通讯作者:     Email:
作者简介: 李樾(1991-),海军航空大学博士研究生,主要从事有人/无人机协同编队研究。
相关功能
PDF(1219KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李樾  在本刊中的所有文章
韩维  在本刊中的所有文章
陈清阳  在本刊中的所有文章
张勇  在本刊中的所有文章

参考文献:
[1] 申超,李磊,吴洋,等. 美国空中有人/无人自主协同作战能力发展研究[J]. 战术导弹技术, 2018, 1:16-21 SHEN Chao, LI Lei, WU Yang, et al. Research on the Capability of the U.S. Manned/Unmanned Autonomous Collaborative Operations[J]. Tactical Missile Technology, 2018, 1:16-21(in Chinese)
[2] HUMPHREYSY C J, COBBZ R G, JACQUESX D R, et al. Optimal Mission Paths for the Uninhabited Loyal Wingman[C]//16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Reston, 2015:2792-2802
[3] The Department of Defense of USA. Unmanned System Integrated Roadmap[R]. FY2013-2038, 2014
[4] 贾高伟,侯中喜. 美军有/无人机协同作战研究现状与分析[J]. 国防科技. 2017, 38(6):57-59 JIA Gaowei, HOU Zhongxi. The Analysis and Current Situation about the United States Military Manned/Unmanned Aerial Vehicle[J]. National Defense Science & Technology, 2017, 38(6):57-59(in Chinese)
[5] CHAKRAVARTHY A, GHOSE D. Obstacle Avoidance in a Dynamic Environment:a Collision Cone Approach[J]. IEEE Trans on Systems, Man and Cybernetics, Part A:Systems and Humans, 1998, 28(5):562-574
[6] SCHMITT L, FICHTER W. Collision-Avoidance Framework for Small Fixed-Wing Unmanned Aerial Vehicles[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(4):1323-1329
[7] ANDRIY A, ALEKSANDR V, OLEKSANDR V, et al. Improvement of the Anti Collision Method ‘Velocity Obstacle’ by Taking into Consideration the Pyamics of an Operating Vessel[J]. Eastern-Earopean Journal of Enterprise Technologies, 2019, 6(3):14-19
[8] KLUGE B, PRASSLER E. Recursive Probabilistic Velocity Obstacles for Reflective Navigation[J]. Field and Service Robotics, 2006(24):71-79
[9] MUJUMDAR A, PADHI R. Reactive Collision Avoidance of Using Nonlinear Geometric and Differential Geometric Guidance[J]. Journal of Guidance, Control, and Dynamics, 2012, 34(1):303-311
[10] FIORINI P, SHILLER Z. Motion Planning in Dynamic Environments Using Velocity Obstacles[J]. International Journal of Robotics Research, 1998, 17(7):760-772
[11] 杨秀霞,周硙硙,张毅. 基于速度障碍圆弧法的UAV自主避障规划研究[J]. 系统工程与电子技术, 2017, 39(1):168-177 YANG Xiuxia, ZHOU Weiwei, ZHANG Yi. Automatic Obstacle Avoidance Planning for UAV Based on Velocity Obstacle Arc Method[J]. Systems Engineering and Electronics, 2017, 39(1):168-177(in Chinese)
[12] JENIE Y I, VAN KAMPEN E J, DE VISSER C C, et al. Selective Velocity Obstacle Method for Deconflicting Maneuvers Applied to Unmanned Aerial Vehicles[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(6):1140-1145
[13] SNAPE J, VAN DEN BERG J, GUY S. The Hybrid Reciprocal Velocity Obstacle[J]. IEEE Trans on Robotics, 2011, 4:696-706
[14] CHARKRAVARTHY A, GHOS D. Generalization of the Collision Cone Approach for Motion Safety in 3-D Environments[J]. Autonomous Robots, 2012, 32(3):243-266
[15] AMDT. 14 CFR § 91.113-Right-of-Way rules:Except Water Operations[R]. National Archives and Records Administration's Office of the Federal Register, 91282, 69 FR 44880, 2004