论文:2020,Vol:38,Issue(1):147-154
引用本文:
闫中江, 李倩倩, 李波, 杨懋. 定向航空中继网络中一种基于链路距离分环的多址接入协议[J]. 西北工业大学学报
YAN Zhongjiang, LI Qianqian, LI Bo, YANG Mao. A Link Distance Division Based Time Division Multiple Access Protocol for Directional Aeronautical Relay Networks[J]. Northwestern polytechnical university

定向航空中继网络中一种基于链路距离分环的多址接入协议
闫中江, 李倩倩, 李波, 杨懋
西北工业大学 电子信息学院, 陕西 西安 710072
摘要:
在定向航空中继网络中,中继飞机利用定向天线通信距离远、发射功率小、无线信号干扰范围小等优点,辅助地面节点克服地形遮挡、信号衰弱大、通信距离受限等缺点,以较少的跳数进行通信,有效降低端到端数据传输时延、提高网络吞吐量。针对定向航空中继网络中由于通信链路长、无线信号传播时延与数据传输时延相近,所引起的通信时延扩展、多址接入协议效率低等问题,提出了一种基于通信链路距离进行分环的时分多址接入协议(link distance division based time division multiple access protocol,LDD-TDMA)。与传统的TDMA多址接入协议中所有链路均使用相同的时隙长度不同,LDD-TDMA根据通信链路的距离远近使用不同的时隙长度。进一步为了简化协议实现,提出通信覆盖范围分环的概念,使得处于同一个环内链路距离相近的节点使用相同的时隙长度。接着,建模分析并推导出了最大化多址接入效率的分环的个数、分环半径与节点最大通信距离之间的闭合表达式。最后,仿真结果表明,当中继飞机最大通信距离为200 km、分环个数为4时,LDD-TDMA的多址接入效率相较于传统的TDMA可提高13.37%。
关键词:    定向航空中继网络    多址接入协议    链路距离    通信时延扩展    分环   
A Link Distance Division Based Time Division Multiple Access Protocol for Directional Aeronautical Relay Networks
YAN Zhongjiang, LI Qianqian, LI Bo, YANG Mao
School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
In directional aeronautical relay networks, the airplane relay explores the advantages of the directional antenna, in terms of long transmission distance, low transmission power, small interference range and so on, to help the ground nodes transmitting data. However, data transmission delay extension problem occurs when the distance of the transmission link extends, where the wireless signal transmission time approximates the data transmission time such that the wireless signal transmission time cannot be omitted. To address the data transmission delay extension problem, a link distance division based time division multiple access protocol, LDD-TDMA, is proposed in this paper. Different from the traditional TDMA protocol, where the time slots are equal and are determined by the longest transmission link, the length of the time slots are different and are determined by different transmission links. Furthermore, the concept of communication coverage ring is proposed where the nodes located in the same ring communicate with the relay utilizing the same time slot length. The relationships between the number of rings, the ring radius and the transmission range of the LDD-TDMA are modelled and derived as a closed formula, where the ring radius are optimized such that the gain is maximized. Simulation results show that LDD-TDMA outperforms TDMA by 13.37% when the transmission range is 200 km and the ring number is 4.
Key words:    directional aeronautical relay networks    multiple access protocol    link distance    data transmission delay extension    communication ring   
收稿日期: 2019-01-12     修回日期:
DOI: 10.1051/jnwpu/20203810147
基金项目: 国家自然科学基金(61771392,61771390,61871322,61501373,61271279)、国家科技重大专项(2015ZX03002006-004,2016ZX03001018-004)与航空科学基金(20185553035)资助
通讯作者:     Email:
作者简介: 闫中江(1983-),西北工业大学副教授,主要从事宽带无线网络组网协议设计、片上网络协议设计与实现研究。
相关功能
PDF(1347KB) Free
打印本文
把本文推荐给朋友
作者相关文章
闫中江  在本刊中的所有文章
李倩倩  在本刊中的所有文章
李波  在本刊中的所有文章
杨懋  在本刊中的所有文章

参考文献:
[1] MACLEOD R B, MARGETTS A. Networked Airborne Communications Using Adaptive Multi-Beam Directional Links[C]//2016 IEEE Aerospace Conference, Big Sky, MT, USA, 2016:1-7
[2] SHAKE T, AMIN R. Maximizing Interconnectedness and Availability in Directional Airborne Range Extension Networks[C]//2017 IEEE Military Communications Conference, Baltimore, MD, USA, 2017:273-278
[3] KUPERMAN G, MARGOLIES R, JONES N M, et al. Uncoordinated MAC for Adaptive Multi-Beam Directional Networks:Analysis and Evaluation[C]//2016 25th International Conference on Computer Communication and Networks, Waikoloa, HI, USA, 2016:1-10
[4] PROULX B, KUPERMAN G, JONES N M, et al. Simulation and Modeling of a New Medium Access Control Scheme for Multi-Beam Directional Networking[C]//2017 IEEE Aerospace Conference, Big Sky, MT, USA, 2017:1-9
[5] SHAKE T. Topology Design for Directional Range Extension Networks with Antenna Blockage[C]//2017 IEEE Wireless Communications and Networking Conference, San Francisco, CA, USA, 2017:1-6
[6] 刘创,吕娜,陈柯帆,等. 一种面向航空集群的无人机中继网络部署策略[J]. 计算机工程, 2018, 44(5):107-112 LIU Chuang, LYU Na, CHEN Kefan, et al. An Unmanned Aerial Vehicle Relay Network Deployment Strategy for Aeronautic Swarm[J]. Computer Engineering, 2018, 44(5):107-112(in Chinese)
[7] 周杰,刘元安,吴帆,等. 基于混沌并行遗传算法的多目标无线传感器网络跨层资源分配[J]. 物理学报,2011,60(9):148-157 ZHOU Jie, LIU Yuanan, WU Fan, et al. Allocation of Multi-Objective Cross-Layer Wireless Sensor Network Resource Based on Chaotic Parallel Genetic Algorithm[J]. Acta Phys Sin, 2011, 60(9):148-157(in Chinese)
[8] BOUKERCHE A, SAMARAH S. A Novel Algorithm for Mining Association Rules in Wireless Ad Hoc Sensor Networks[J]. IEEE Trans on Parallel & Distributed Systems, 2008, 19(7):865-877
[9] 栾鹏, 朱江, 高凯. 低轨卫星接入系统中基于位置信息的时隙分配协议[J]. 电讯技术, 2016, 56(9):990-994 LUAN Peng, ZHU Jiang, GAO Kai. A Position-Based Slot Assignment Protocol for LEO Satellites Network[J]. Telecommunication Engineering, 2016, 56(9):990-994(in Chinese)
[10] 程楠, 刘志敏, 王继新. Adhoc网络TDMA分布式动态时隙算法[J]. 计算机应用研究, 2005, 22(1):222-225 CHENG Nan, LIU Zhimin, WANG Jixin. TDMA-Based Distributed Dynamic Slot Algorithm for Adhoc Networks[J]. Application Research of Computers, 2005, 22(1):222-225(in Chinese)
[11] 闫少晨, 马正新, 石荣. 基于位置信息的大区域移动自组网MAC协议[J]. 电视技术, 2010, 34(增刊2):60-62+72 YAN Shaochen, MA Zhengxin, SHI Rong. A Position Based MAC Protocol for Large Scale Mobile Adhoc Networks[J]. 2010, 34(suppl 2):60-62+72(in Chinese)
[12] 吴光宇, 姚凯凌. 一种广义干扰模型以及分布式ABS时隙接入方法[P]. CN106792807A, 2017 WU Guangyu, YAO Kailing. A General Interference Model and Distributed ABS Slot Access Method[P]. China, CN106792807A, 2017(in Chinese)