论文:2020,Vol:38,Issue(1):139-146
引用本文:
撒成花, 薛艳, 魏晨, 梁浩彬, 谢丽, 叶芳. 基于功能微拓扑结构的细胞定位培养芯片[J]. 西北工业大学学报
SA Chenghua, XUE Yan, WEI Chen, LIANG Haobin, XIE Li, YE Fang. Cell Positioning Culture Chip Based on Functional Micro Topological Substrate[J]. Northwestern polytechnical university

基于功能微拓扑结构的细胞定位培养芯片
撒成花1,2, 薛艳3, 魏晨4, 梁浩彬5, 谢丽6,7, 叶芳1,2
1. 西北工业大学 机电学院, 陕西 西安 710072;
2. 空天微纳系统教育部重点实验室, 陕西 西安 710072;
3. 中国航空航天四川燃气轮机研究院, 四川 成都 610000;
4. 中航陕西航空电气有限公司, 陕西 西安 713107;
5. 深圳市迈瑞生物医疗电子有限公司, 广东 深圳 518057;
6. 西北工业大学 生命学院, 陕西 西安 710072;
7. 空间生物实验模拟技术国防重点学科实验室, 陕西 西安 710072
摘要:
提出了一种功能微拓扑结构细胞培养芯片,芯片结构由具有细胞粘附特异性的微平台和微柱阵列交替排布而成,并采用具有良好生物相容性和化学稳定性的聚合物制备,因此该芯片具有对细胞规约能力强和定位稳定性好的优点。芯片性能验证结果表明,所设计的功能微拓扑结构芯片细胞定位率达到90%,芯片结构及尺寸稳定性好,为需要长期细胞培养的干细胞研究提供了重要的支撑工具。
关键词:    细胞定位培养芯片    功能微拓扑结构    图形化   
Cell Positioning Culture Chip Based on Functional Micro Topological Substrate
SA Chenghua1,2, XUE Yan3, WEI Chen4, LIANG Haobin5, XIE Li6,7, YE Fang1,2
1. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
2. Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, China;
3. China Hangfa Sichuan Gas Turbine Research Institute, Chengdu 610000, China;
4. AVIC Shaanxi Aero Electric Co Ltd, Xi'an 713107, China;
5. Shenzhen Mindray Bio-medical Electronics Co Ltd, Shenzhen 518057, China;
6. School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China;
7. Key Laboratory of Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
There are two main categories of cell positioning culture chips:chemical modification of surfaces and physical structure methods. The chemical methods have the advantage of providing a strong binding force, but the instability of chemical materials limits its application. The physical methods have the advantage of good stability for cell positioning, while the nonspecificity of physical structure weakens the ability to regulate cells. Here, we propose a functional micro topological chip. The chip is composed of micro-platform and micro-post array with different adhesion characteristics. At the same time, the chip is prepared by a polymer material with good biocompatibility and high chemical stability; therefore, it has the advantages of strong cell constraint ability and good localization stability. The result of chip performance verification shows that the cell localization rate of the functional micro topological chip is up to 90%, and the chip structure and dimension stability are good. The study provides an important supporting tool for the research of stem cells and their differentiation that need long-term cell culture.
Key words:    cell positioning culture chip    functional micro topology    micro pattern   
收稿日期: 2019-04-01     修回日期:
DOI: 10.1051/jnwpu/20203810139
基金项目: 陕西省自然科学基础研究计划(2018JM5146)、111引智项目(B13044)及陕西省科技统筹创新工程重点实验室项目资助
通讯作者:     Email:
作者简介: 撒成花(1992-),女,西北工业大学硕士研究生,主要从事MEMS生物芯片技术研究。
相关功能
PDF(4917KB) Free
打印本文
把本文推荐给朋友
作者相关文章
撒成花  在本刊中的所有文章
薛艳  在本刊中的所有文章
魏晨  在本刊中的所有文章
梁浩彬  在本刊中的所有文章
谢丽  在本刊中的所有文章
叶芳  在本刊中的所有文章

参考文献:
[1] ZHOU X, LI J, SUN H, et al. Controlled Cell Patterning on Bioactive Surfaces with Special Wettability[J]. Journal of Bionic Engineering, 2017, 14(3):440-447
[2] GUVEN S, CHEN P, INCI F, et al. Multiscale Assembly for Tissue Engineering and Regenerative Medicine[J]. Trends in Biotechnology, 2015, 33(5):269-279
[3] FU Jianping, WANG Yangkao, CHEN Christopher, et al. Mechanical Regulation of Cell Function with Geometrically Modulated Elastomeric Substrates[J]. Nature Methods, 2010, 7(9):733-736
[4] CHOI J S, KIM D H, SEO T S. Facile Endothelial Cell Micropatterning Induced by Reactive Oxygen Species on Polydimethylsiloxane Substrates[J]. Biomaterials, 2016, 84:315-322
[5] JEON H J, SIMON C G, KIM G H. A Mini-Review:Cell Response to Microscale, Nanoscale, and Hierarchical Patterning of Surface Structure[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials, 2014, 102(7):1580-1594
[6] YIANNAKOU C, SIMITZI C, MANOUSAKI A, et al. Cell Patterning via Laser Micro/Nano Structured Silicon Surfaces[J]. Biofabrication, 2017, 9(2):1-8
[7] HAN Fengxuan, ZHU Caihong, GUO Qianping, et al. Cellular Modulation by the Elasticity of Biomaterials[J]. Journal of Materials Chemistry, 2016(4):9-26
[8] Doyle, Andrew D, Yamada, Kenneth M. Mechanosensing via Cell-Matrix Adhesions in 3D Microenvironments[J]. Experimental Cell Research, 2016, 343(1):60-66
[9] MAURIZIO V, PAOLO N. Controlling Cell Functions and Fate with Surfaces and Hydrogels:the Role of Material Features in Cell Adhesion and Signal Transduction[J]. Gels, 2016, 2(1):12
[10] SONG J, SHAWKY J H, KIM Y T, et al. Controlled Surface Topography Regulates Collective 3D Migration by Epithelial-Mesenchymal Composite Embryonic Tissues[J]. Biomaterials, 2015, 58:1-9
[11] HUI J, PANG S W. Dynamic Tracking of Osteoblastic Cell Traction Force during Guided Migration[J]. Cellular and Molecular Bioengineering, 2017, 11(1):11-23
[12] GUTEKUNST S B, CARSTEN G, ALEXANDER K, et al. Influence of the PDMS Substrate Stiffness on the Adhesion of, Acanthamoeba Castellanii[J]. Beilstein Journal of Nanotechnology, 2014, 5:1393-1398
[13] TRUONG D T, BAHLS C, NEBE B, et al. An Implementation for the Simulation of Cells on Micro-Post Arrays[C]//2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2016:6138-6141
[14] OKEYO K O, MIYOSHI H, ADACHI T. Design Concept of Topographical and Mechanical Properties of Synthetic Extracellular Matrix to Control Cell Functions and Fates Through Actin Cytoskeletal Modulation[M]. Tokyo:Springer Japan, 2015:159-189