论文:2020,Vol:38,Issue(1):121-129
引用本文:
胡佳伟, 王掩刚, 刘汉儒, 陈为雄, 徐永. 压气机叶栅非定常分离流动的模态分解方法对比研究[J]. 西北工业大学学报
HU Jiawei, WANG Yangang, LIU Hanru, CHEN Weixiong, XU Yong. Comparative Study on Modal Decomposition Methods of Unsteady Separated Flow in Compressor Cascade[J]. Northwestern polytechnical university

压气机叶栅非定常分离流动的模态分解方法对比研究
胡佳伟1,2, 王掩刚1, 刘汉儒1,2, 陈为雄1, 徐永3
1. 西北工业大学 动力与能源学院, 陕西 西安 710072;
2. 西北工业大学 长三角研究院, 太仓 215400;
3. 北京长城计量测试技术研究所, 北京 100095
摘要:
以某高负荷压气机叶栅为研究对象,应用模态分解方法研究叶栅附面层分离所产生的旋涡结构形式和波动频率特征,获得了叶栅非定常流动的主导模态和动态行为,探讨了3种模态分解方法(本征正交分解(POD)、动态模态分解(DMD)和谱本征正交分解(SPOD))在叶栅流动特征识别的差异性。研究结果表明:①POD方法准确提取叶栅分离流动主要空间结构,但模态系数存在多频率耦合问题,导致对于叶栅流动的主导模态特征无法清晰识别;②标准DMD方法可以获得叶栅流动时空单频模态,及其增长率和频率,但是该方法捕捉到流场大衰减率的大振幅次优模态,未能获得高频相干结构,导致无法用有限的模态数得到主导特征;③基于谱特征的SPOD方法能够获得时空单频模态,且不存在模态筛选问题,谱估计方法的使用降低了对数值噪声的敏感性,同时该方法获得了叶栅流动的低秩行为,有助于增强对叶栅流动机理的理解。因此,对高负荷压气机叶栅分离流动进行模态分析时,SPOD方法更具优势。
关键词:    本征正交分解    动态模态分解    谱本征正交分解    单频模态    叶栅流动机理   
Comparative Study on Modal Decomposition Methods of Unsteady Separated Flow in Compressor Cascade
HU Jiawei1,2, WANG Yangang1, LIU Hanru1,2, CHEN Weixiong1, XU Yong3
1. School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China;
2. Yangtze River Delta Research Institute of Northwestern Polytechnical University, Taicang 215400, China;
3. Beijing Changcheng Institute of Metrology and Measurement, Beijing 100095, China
Abstract:
The present work investigated the vortex structure and fluctuation frequency characteristics generated by boundary layer separation of a high-load compressor cascade using modal decomposition methods. The dominant modes and dynamic behaviors of unsteady flow in the cascade were obtained, and the differences of three modal decomposition methods (Proper Orthogonal Decomposition, Dynamic Mode Decomposition and Spectral Proper Orthogonal Decomposition) in feature recognition of cascade flow were discussed. The results show that:(1) The POD method can accurately extract the dominant spatial structure of the flow field, but the modal coefficients are multi-frequency coupled, which makes the dominant modal characteristics of cascade flow unclear. (2) The standard DMD method can obtain the spatial-temporal single frequency mode of cascade flow, as well as their growth rates and frequencies. However, this method is likely to capture the suboptimal mode of large amplitude with large attenuation rate, and fails to obtain the high-frequency coherent structure, which makes it impossible to obtain the dominant feature with limited mode number. (3) The SPOD method, based on spectral characteristics, can obtain spatial and temporal single frequency modes, and there is no modal screening problem. The use of spectral estimation method (SPOD) reduces the sensitivity to numerical noise. This method can obtain the low-rank behavior of cascade flow, which is helpful to understand cascade flow mechanisms. Therefore, SPOD method is more advantageous for the modal analysis of unsteady separated flow in high-load compressor cascade.
Key words:    proper orthogonal decomposition    dynamic mode decomposition    spectral proper orthogonal decomposition    single frequency mode    cascade flow mechanisms   
收稿日期: 2019-04-01     修回日期:
DOI: 10.1051/jnwpu/20203810121
基金项目: 太仓市大院大所创新引领专项计划(TC2019DYDS09)与航空动力基金(6141B090303)资助
通讯作者: 刘汉儒(1985-),西北工业大学副教授,主要从事叶轮机械气动噪声研究。e-mail:hrliu@nwpu.edu.cn     Email:hrliu@nwpu.edu.cn
作者简介: 胡佳伟(1995-),西北工业大学硕士研究生,主要从事叶轮机械降阶模型与气动优化研究。
相关功能
PDF(3988KB) Free
打印本文
把本文推荐给朋友
作者相关文章
胡佳伟  在本刊中的所有文章
王掩刚  在本刊中的所有文章
刘汉儒  在本刊中的所有文章
陈为雄  在本刊中的所有文章
徐永  在本刊中的所有文章

参考文献:
[1] DOWELL E H, HALL K C. Modeling of Fluid Structure Interaction[J]. Annual Review of Fluid Mechanics, 2001, 33(1):445-490
[2] LI J C, CAI J S, QU K. Adjoint-Based Two-Step Optimization Method Using Proper Orthogonal Decomposition and Domain Decomposition[J]. AIAA Journal, 2018, 56(3):1133-1145
[3] BRUNTON S L, NOACK B R. Closed-Loop Turbulence Control:Progress and Challenges[J]. Applied Mechanics Reviews, 2015, 67(5):050801
[4] SIROVICH L. Turbulence and the Dynamics of Coherent Structures I. Coherent Structures[J]. Quarterly of Applied Mathematics, 1987, 45(3):561-571
[5] 王掩刚, 陈俊旭, 先松川. 基于POD方法的二维方柱低雷诺数绕流流场分析研究[J]. 西北工业大学学报, 2014, 32(4):612-617 WANG Yangang, CHEN Junxun, XIAN Songchuan. Analysis of Square Cylinder Unsteady Flow at Low Reynolds Number with POD Method[J]. Journal of Northwestern Polytechnical University, 2014, 32(4):612-617(in Chinese)
[6] SEIDEL J, SIEGEL S, COHEN K, et al. POD Based Separation Control on the NACA0015 Airfoil[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005
[7] WANG Y G, LI Y, CHEN J X. Analysis of the Unsteady Flow in Compressor Cascade with POD Method[C]//ASME Turbo Expo:Turbine Technical Conference and Exposition, 2016
[8] SCHMID P J. Dynamic Mode Decomposition of Numerical and Experimental Data[J]. Journal of Fluid Mechanics, 2010, 656(10):5-28
[9] KOU J Q, ZHANG W W, LIU Y L, et al. The Lowest Reynolds Number of Vortex-induced Vibrations[J]. Physics of Fluids, 2017, 29(4):041701
[10] MARIAPPAN S, GARDNER A D, RICHTER K, et al. Analysis of Dynamic Stall Using Dynamic Mode Decomposition Technique[J]. AIAA Journal, 2013, 52(11):2427-2439
[11] 寇家庆, 张伟伟, 高传强. 基于POD和DMD方法的跨声速抖振模态分析[J]. 航空学报, 2016, 37(9):2679-2689 KOU Jiaqing, ZHANG Weiwei, GAO Chuanqiang. Modal Analysis of Transonic Buffet Based on POD and DMD Method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2679-2689(in Chinese)
[12] 寇家庆, 张伟伟. 动力学模态分解及其在流体力学中的应用[J].空气动力学学报, 2018, 36(2):163-179 KOU Jiaqing, ZHANG Weiwei. Dynamic Mode Decomposition and its Applications in Fluid Dynamics[J]. Acta Aerodynamica Sinica, 2018, 36(2):163-179(in Chinese)
[13] AARON T, SCHMIDT O T, TIM C. Spectral Proper Orthogonal Decomposition and its Relationship to Dynamic Mode Decomposition and Resolvent Analysis[J]. Journal of Fluid Mechanics, 2018, 847:821-867
[14] ABREU L I, CAVALIERI A V G, WOLF W R. Coherent Hydrodynamic Waves and Trailing-Edge Noise[C]//23rd AIAA/CEAS Aeroacoustics Conference, 2017
[15] ARAYA D, DABIRI J. Transition to Bluff Body Dynamics in the Wake of Vertical Axis Turbines[J]. Journal of Fluid Mechanics, 2017, 813(7):346-381
[16] CHEN K K, TU J H, ROWLEY C W. Variants of Dynamic Mode Decomposition:Boundary Condation, Koopman, and Fourier Analysis[J]. Journal of Nonlinear Science, 2012, 22(6):887-915