论文:2020,Vol:38,Issue(1):68-74
引用本文:
吴翰, 王正平, 周洲, 王睿. 无人机伞降回收十二自由度模型建立与仿真[J]. 西北工业大学学报
WU Han, WANG Zhengping, ZHOU Zhou, WANG Rui. Establishment and Simulation of Twelve-Degree-of-Freedom Model for UAV Parachute Recovery System[J]. Northwestern polytechnical university

无人机伞降回收十二自由度模型建立与仿真
吴翰, 王正平, 周洲, 王睿
西北工业大学 航空学院, 陕西 西安 710072
摘要:
在无人机的伞降回收过程中,无人机与降落伞一直处于一种动平衡的状态,因此两者间约束关系的处理将是伞降回收动力学建模的难点。为了解决该问题,将无人机伞降回收系统划分为降落伞、吊带和无人机三部分,通过吊带连接点的速度关系得到吊带伸长量,通过弹性系数与吊带伸长量的乘积得到吊带拉力,并将其分别施加于降落伞和无人机系统,最终基于牛顿-欧拉方程建立了无人机伞降回收系统十二自由度模型,其中采用ONERA方程建立无人机由前飞过渡到稳定下降阶段的非定常气动力模型。通过数值仿真与实验数据对比可以发现:十二自由度模型和实验数据的结果一致,验证了该模型的准确性。十二自由度模型相比于六自由度模型精度更高。文中所建模型可为无人机伞降回收系统中降落伞的选取、无人机着陆点的确定提供参考。
关键词:    无人机伞降回收    十二自由度模型    牛顿-欧拉方程    ONERA方程    动力学建模   
Establishment and Simulation of Twelve-Degree-of-Freedom Model for UAV Parachute Recovery System
WU Han, WANG Zhengping, ZHOU Zhou, WANG Rui
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
In the UAV parachute recovery process, the UAV and the parachute have always been in the state of dynamic balance, so it is difficult to deal with the constraint between them. In order to solve this problem, the UAV parachute recovery system was divided into three parts:the parachute, riser and UAV. The extension length of riser was obtained by the velocity relationships of the riser connection points. The riser tension was obtained by the product of the elastic coefficient and the extension length of the riser. And it was applied to the parachute and UAV systems respectively. Finally, based on the Newton-Euler equation, the 12-DOF model of UAV parachute recovery system was established, in which the unsteady aerodynamic model of the UAV from the forward flight to the steady descents was established based on the ONERA equation. The simulation and test results shows:the 12-DOF model is consistent with the results of the experimental data, which verifies the accuracy of the 12-DOF model. The 12-DOF model is more accurate than the past 6-DOF model. This model established in this paper can provide reference for the selection of parachute in the UAV parachute recovery system and the determination of the landing point of the UAV.
Key words:    UAV parachute recovery    12-DOF model    Newton-Euler equation    ONERA equation    dynamics modeling    simulation and test   
收稿日期: 2019-03-19     修回日期:
DOI: 10.1051/jnwpu/20203810068
基金项目: 航空科学基金(2016ZA53002)与陕西省重点研发项目(2018ZDCXL-GY-03-04)资助
通讯作者: 王正平(1964-),西北工业大学教授,主要从事飞行器总体设计与结构设计研究。e-mail:ad502@nwpu.edu.cn     Email:ad502@nwpu.edu.cn
作者简介: 吴翰(1996-),西北工业大学硕士研究生,主要从事飞行器总体设计、多体动力学建模与控制研究。
相关功能
PDF(1753KB) Free
打印本文
把本文推荐给朋友
作者相关文章
吴翰  在本刊中的所有文章
王正平  在本刊中的所有文章
周洲  在本刊中的所有文章
王睿  在本刊中的所有文章

参考文献:
[1] FIELDS T D, YAKIMENKO O A. Development of a Steerable Single-Actuator Cruciform Parachute[J]. Journal of Aircraft, 2018, 55(3):1041-1048
[2] LEONARD J, ACCORSI M. Structural Modeling of Parachute Dynamics[J]. AIAA Journal, 2000, 38(1):139-145
[3] 张青斌, 丰志伟, 马洋,等. 火星EDL过程动力学建模与仿真[J]. 宇航学报, 2017, 38(5):443-449 ZHANG Qingbin, FENG Zhiwei, MA Yang, et al. Modeling and Simulation of Mars EDL Process[J]. Journal of Astronautics, 2017, 38(5):443-449(in Chinese)
[4] WANG Haitao. Dynamic Modeling and Simulation of Whipping Phenomenon for Large Parachute[J]. AIAA Journal, 2018, 56(10):4049-4058
[5] 郭亮, 张红英, 童明波. 无人机伞回收动力学分析[J]. 南京航空航天大学学报, 2012, 44(1):14-19 GUO Liang, ZHANG Hongying, TONG Mingbo. Dynamics Analysis on Parachute Recovery of Unmanned Aerial Vehicle[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(1):14-19(in Chinese)
[6] 吴翰, 王正平, 周洲, 等. 基于凯恩方程的无人机伞降动力学建模与仿真[J]. 北京航空航天大学学报, 2019, 45(6):1256-1265 WU Han, WANG Zhengping, ZHOU Zhou, et al. Dynamics Modeling and Simulation of UAV Parachute Recovery Based on Kane Equation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6):1256-1265(in Chinese)
[7] DUNN P E, DUGUNDJI J. Nonlinear Large Amplitude Aeroelastic Behavior of Composite Rotor Blades[J]. AIAA Journal, 1992, 30(1):153-162
[8] 荣伟, 包进进. 火星大气对降落伞充气性能影响的初步探讨[J]. 航天返回与遥感, 2017, 38(4):1-4 RONG Wei, BAO Jinjin. The Primary Studies on the Effect of Martian Atmosphere on Parachute Inflation Performances[J]. Spacecraft Recovery & Remote Sensing, 2017, 38(4):1-4(in Chinese)
[9] 常林, 刘延瑞, 徐玮, 等. 大型水平轴风力机叶片气弹稳定性研究及控制[J]. 机械设计与研究, 2018, 34(2):199-204 CHANG Lin, LIU Yanrui, XU Wei, et al. Research and Control of Blabe Aeroelastic Stability of Large Horizontal Axis Wind Turbine[J]. Machine Design and Research, 2018, 34(2):199-204(in Chinese)
[10] 林学海, 任勇生. 基于ONERA气动力模型的风力机叶片颤振时域分析[J]. 山东科技大学学报, 2009, 28(3):56-60 LIN Xuehai, REN Yongsheng. Analysis of Flutter Time-Domain for Blades of Wind Turbine Based on the ONERA Aerodynamic Model[J]. Journal of Shandong University of Science and Technology, 2009, 28(3):56-60(in Chinese)
[11] 吴翰, 王正平, 周洲, 等. 多旋翼固定翼无人机多体动力学建模[J]. 西北工业大学学报, 2019, 5(37):928-930 WU Han, WANG Zhengping, ZHOU Zhou, et al. Modeling and Simulation for Multi-Rotor Fixed-Wing UAV Based on Multibody Dynamics[J]. Journal of Northwestern Polytechnical University, 2019, 5(37):928-930(in Chinese)
[12] HOGAN F R, FORBES J R. Modeling of Spherical Robots Rolling on Generic Surfaces[J]. Multibody System Dynamics, 2015, 35(1):91-109
[13] 郭鹏. 大型降落伞开伞过程研究[D]. 长沙:国防科技大学, 2012:72-80 GUO Peng. Research on the Opening Process of Large Parachute System[D]. Changsha:National University of Defense Technology, 2012:72-80(in Chinese)