论文:2020,Vol:38,Issue(1):58-67
引用本文:
刘睿, 白俊强, 邱亚松, 高国柱. 内吹式襟翼几何参数影响研究与优化设计[J]. 西北工业大学学报
LIU Rui, BAI Junqiang, QIU Yasong, GAO Guozhu. Effects of Geometrical Parameters of Internal Blown Flap and Its Optimal Design[J]. Northwestern polytechnical university

内吹式襟翼几何参数影响研究与优化设计
刘睿, 白俊强, 邱亚松, 高国柱
西北工业大学 航空学院, 陕西 西安 710072
摘要:
采用数值模拟方法对内吹式襟翼进行了研究。首先,开发了一种针对内吹式襟翼的参数化方法,该方法可以根据襟翼弦长、偏角、吹气缝高度、位置这些几何参数很好地描述其外形。然后,通过与CC020-010EJ标模的试验压力分布进行对比,验证了所采用数值模拟方法的可信度。分别研究这些几何参数对内吹式襟翼气动性能的影响,研究结果表明:襟翼弦长越长、偏角越大、吹气缝越窄、位置越靠前,翼型的升力系数越大。最后,构建了一种针对内吹式襟翼几何参数的优化设计方法。在固定吹气动量系数的基础上,以襟翼弦长、偏角、吹气缝高度、位置这些几何参数为设计变量,以5°迎角升力系数最大为优化目标,以失速迎角不小于9°为设计约束,开展优化设计。优化结果表明,优化设计方法可以显著提高内吹式襟翼的升力系数,升力系数的提高量达到1.7左右。
关键词:    内吹式襟翼    几何参数    优化设计    升力系数    压力分布   
Effects of Geometrical Parameters of Internal Blown Flap and Its Optimal Design
LIU Rui, BAI Junqiang, QIU Yasong, GAO Guozhu
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
The internal blown flap was numerically simulated. Firstly, a parameterization method was developed, which can properly describe the shape of the internal blown flap according to such geometrical parameters as flap chord length, flap deflection, height of blowing slot and its position. Then the reliability of the numerical simulation was validated through comparing the pressure distribution of the CC020-010EJ fundamental generic circulation control airfoil with the computational results and available experiment results. The effects of the geometrical parameters on the aerodynamic performance of the internal blown flap was investigated. The investigation results show that the lift coefficient increases with the increase of flap chord length and flap deflection angle and with the decrease of height of blowing slot and its front position. Lastly, a method of optimal design of the geometrical parameters of the internal blown flap was developed. The design variables include flap chord length, flap deflection, height of blowing slot and its position. The optimal design is based on maximum lift coefficient, the angle of attack of 5 degrees and the design constraint of stall angle of attack of less than 9 degrees. The optimization results show that the optimal design method can apparently raise the lift coefficient of an internal blown flap up to 1.7.
Key words:    internal blown flap    geometry parameter    optimization design    lift coefficient    pressure distribution   
收稿日期: 2019-01-10     修回日期:
DOI: 10.1051/jnwpu/20203810058
基金项目: 航空科学基金(20161453011)资助
通讯作者:     Email:
作者简介: 刘睿(1992-),西北工业大学博士研究生,主要从事飞行器气动外形优化设计研究。
相关功能
PDF(2768KB) Free
打印本文
把本文推荐给朋友
作者相关文章
刘睿  在本刊中的所有文章
白俊强  在本刊中的所有文章
邱亚松  在本刊中的所有文章
高国柱  在本刊中的所有文章

参考文献:
[1] VAN DAM C P. The Aerodynamic Design of Multi-Element High-Lift Systems for Transport Airplanes[J]. Progress in Aerospace Sciences, 2002, 38(2):101-144
[2] WERNER-SPATZ C, HEINZE W, HORST P, et al. Multidisciplinary Conceptual Design for Aircraft with Circulation Control High-Lift Systems[J]. CEAS Aeronautical Journal, 2012, 3(2/3/4):145-164
[3] PETROV A V. Aerodynamics of STOL Airplanes with Powered High-Lift Systems[C]//Proceedings of the ICAS 2012 Congress, Brisbane, Australia, 2012
[4] RADESPIEL R, BURNAZZI M, CASPER M, et al. Active Flow Control for High Lift with Steady Blowing[J]. The Aeronautical Journal, 2016, 120(1223):171-200
[5] 朱自强, 吴宗成. 环量控制技术研究[J]. 航空学报, 2016, 37(2):411-428 ZHU Ziqiang, WU Zongcheng. Study of the Circulation Control Technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):411-428(in Chinese)
[6] 张刘, 姜裕标, 黄勇,等. 内吹式襟翼环量控制翼型非定常升力响应特性研究[J]. 航空学报, 2018, 39(5):121807 ZHANG Liu, JIANG Yubiao, HUANG Yong, et al. Lift build-Up on Internally Blown Flap[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):121807(in Chinese)
[7] FRANÇOIS D G, RADESPIEL R, SEMAAN R. Numerical Investigations of Spanwise-Varied Unsteady Coanda Actuation on High-Lift Configuration[J]. Journal of Aircraft, 2018, 55(4):1720-1730
[8] BURNAZZI M, RADESPIEL R. Design and Analysis of a Droop Nose for Coanda Flap Applications[J]. Journal of Aircraft, 2014,51(5):1567-1579
[9] RADESPIEL R, BURNAZZI M. Active Flow and Combustion[M]. Berlin:Springer, 2015:101-114
[10] JENSCH C, PFINGSTEN K C, RADESPIEL R, et al. Design Aspects of a Gapless High-Lift System with Active Blowing[C]//Proceedings of Deutscher Luft-und Raumfahrtkongress, Bonn, 2009:8-10
[11] 王妙香, 孙卫平, 秦何军. 水陆两栖飞机内吹式襟翼优化设计[J]. 航空学报, 2016, 37(1):300-309 WANG Miaoxiang, SUN Weiping, QIN Hejun. Optimization Design of an Internal Blown Flap Used in Large Amphibian[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):300-309(in Chinese)
[12] LANE K A, MARSHALL D D. A Surface Parameterization Method for Airfoil Optimization and High Lift 2D Geometries Utilizing the CST Methodology[J]. AIAA Paper, 2009, 1461:5-8
[13] 王迅, 蔡晋生, 屈崑,等. 基于改进CST参数化方法和转捩模型的翼型优化设计[J]. 航空学报, 2015, 36(2):449-461 WANG Xu, CAI Jinsheng, QU Kun, et al. Airfoil Optimization Based on Improved CST Parametric Method and Transition Model[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):449-461(in Chinese)
[14] 陈颂, 白俊强, 孙智伟,等. 基于DFFD技术的翼型气动优化设计[J]. 航空学报, 2014, 35(3):695-705 CHEN Song, BAI Junqiang, SUN Zhiwei, et al. Aerodynamic Optimization Design of Airfoil Using DFFD Technique[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):695-705(in Chinese)
[15] GUO B, BAI J, SHI Y. Optimization Design of Hybird Laminar Flow Control Airfoil Using Directly Manipulated Free-Form Deformation Technique[C]//8th International Conference on Mechanical and Intelligent Manufacturing Technologies, 2017:221-224
[16] 张扬. 一种适用于飞行器外流场模拟的新型湍流模型[D]. 西安:西北工业大学, 2014 ZHANG Yang. A New Turbulence Model for External Flow Simulation of Aircraft[D]. Xi'an:Northwestern Polytechnical University, 2014(in Chinese)
[17] MENTER F, KUNTZ M, LANGTRY R. Ten Years of Industrial Experience with the SST Turbulencemodel[J]. Turbulence, Heat and Mass Transfer, 2003, 4:101-109
[18] ENGLAR R J, JONES G S, ALLAN B G, et al. 2-D Circulation Control Airfoil Benchmark Experiments Intended for CFD Code Validation[C]//47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2009:902
[19] SHIELDS M D, ZHANG J. The Generalization of Latin Hypercube Sampling[J]. Reliability Engineering & System Safety, 2016, 148:96-108
[20] NIU J, LEI J, HE J. Radial Basis Function Mesh Deformation Based on Dynamic Control Points[J]. Aerospace Science and Technology, 2017, 64:122-132
[21] 刘艳. 连续变弯度后缘机翼静气动弹性分析及优化设计[D]. 西安:西北工业大学, 2014 LIU Yan. Aeroelasticity Analysis Method and Optimization Design for Aircraft Wing with Variable Camber Continuous Trailing Edge[D]. Xi'an:Northwestern Polytechnical University, 2014(in Chinese)
相关文献:
1.李立, 白俊强, 郭同彪, 傅子元, 陈颂.基于伴随方法的超声速客机机翼气动优化设计[J]. 西北工业大学学报, 2017,35(5): 843-849
2.夏露, 张阳, 孙腾腾.基于寄生模型的粒子群算法在气动优化中的应用[J]. 西北工业大学学报, 2015,33(2): 178-184