论文:2020,Vol:38,Issue(1):40-47
引用本文:
马良, 马玉娥, 秦强. 热力耦合下不同加筋壁板稳定性分析[J]. 西北工业大学学报
MA Liang, MA Yu'e, QIN Qiang. Stability Analysis of Different Stiffened Plates in Thermal-Mechanical Coupling Environments[J]. Northwestern polytechnical university

热力耦合下不同加筋壁板稳定性分析
马良1, 马玉娥1, 秦强2
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 中国飞机强度研究所, 陕西 西安 710072
摘要:
针对飞行器不同加筋壁板在不同载荷工况下的结构稳定性问题,采用Abaqus有限元分析软件,建立了长度和宽度相同的4种加筋壁板有限元数值分析模型。通过对加筋壁板的屈曲和后屈曲响应分析,给出不同筋条截面形式和布局方向的加筋板在机械载荷、温度载荷以及热力耦合下的屈曲模态和挠度曲线。结果表明:T型加筋板在机械载荷作用下表现出良好的稳定性,最大承受载荷为281 kN,远大于其他截面形式的加筋板;筋条布局方向对加筋板的承载能力影响很小,但是合理的布局能够大幅减小加筋壁板的面外位移;热力耦合下加筋板没有明显的前屈曲过程,其后屈曲响应与机械载荷作用下时大致相同,但是加筋板的最大承载能力会由于温度载荷的存在而减小8%~15%。
关键词:    热力耦合    加筋壁板    稳定性分析    Abaqus    非线性屈曲   
Stability Analysis of Different Stiffened Plates in Thermal-Mechanical Coupling Environments
MA Liang1, MA Yu'e1, QIN Qiang2
1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Aircraft Strength Research Institute, Xi'an 710072, China
Abstract:
In view of the structural stability problem of different typical stiffened panels under different loading conditions, ABAQUS software was used to build finite element models of four typical stiffened panels with the same cross section area. The buckling and post-buckling response of the stiffened panels was analyzed and buckling modes and deflection curves of stiffened panels under mechanical, temperature and thermal-mechanical coupling load were obtained. The result indicates that T type stiffened plate shows great stability under mechanical load, the maximum load is 281KN, which is much higher than that of other types of stiffened panels. The maximum load of a stiffened panel is little affected by the direction of the fillet, but reasonable layout of panels can greatly reduce the out-of-plane displacement of the stiffened panel. There is no obvious pre-buckling process when a panel is under thermal-mechanical coupling load and the post-buckling response is roughly similar as that under mechanical load. But the maximum load of a stiffened plate will decrease by 8%-15% due to the application of temperature load.
Key words:    thermal-mechanical coupling    stiffened plates    stability analysis    Abaqus    nonlinear buckling   
收稿日期: 2019-03-19     修回日期:
DOI: 10.1051/jnwpu/20203810040
基金项目: 西北工业大学研究生创意创新种子基金资助
通讯作者: 马玉娥(1975-),女,西北工业大学教授,主要从事复合材料结构力学和结构强度研究。e-mial:13119125079@qq.com     Email:13119125079@qq.com
作者简介: 马良(1994-),西北工业大学硕士研究生,主要从事固体力学计算研究。
相关功能
PDF(3661KB) Free
打印本文
把本文推荐给朋友
作者相关文章
马良  在本刊中的所有文章
马玉娥  在本刊中的所有文章
秦强  在本刊中的所有文章

参考文献:
[1] BECKER J V. The X-15 Program in Retrospect[C]//Deutsche Gesellschaft fur Luftund Raumfahrt, Bonn, 1968:1-3
[2] HOFF N J. Thermal Buckling of Supersonic Wing Panels[J]. Journal of the Aeronautical Sciences, 1965, 23(11):1019-1028
[3] JOHN G. TAWRESEY, JAMES E. LIUM. Elastic-Inelastic Buckling of Stiffened Panels Subject to Thermal Gradient[J]. Journal of Aircraft, 1972, 9(2):178-185
[4] EARL A. THORNTON, JAMES D. KOLENSKIT, ROBERT P. MARINO. Finite Element Study of Plate Buckling Induced by Spatial Temperature Gradients[C]//American Institute of Aeronautics and Astronautics, United States, 1992:2313-2326
[5] XUE D Y, BOSTIC S, MCGOWAN D. Integrated Transient Thermal-Structural and Stability Analyses of Thermally Loaded Structures[C]//35th Structures, Structural Dynamics, and Materials Conference, 1994:2207-2216
[6] GOSSARD M L, SEIDE P, ROBERTS W M. Thermal Buckling of Plates[R]. NACA/TN 2771, 1952
[7] 丛琳华,刘宁夫. 加筋壁板热屈曲试验方法研究[J]. 工程与试验, 2017,57(4):33-36 CONG Linhua, LIU Ningfu. Study on Test Method for Thermal Buckling of Stiffened Panel[J]. Engineering & Test, 2017, 57(4):33-36(in Chinese)
[8] 钮鹏,李旭,李世荣,等. 弹性约束下Timoshenko夹层梁的热屈曲行为研究[J]. 工程力学,2018,35(增刊1):13-16+39 NIU Peng, LI Xu, LI Shirong, et al. The Thermal Buckling Behavior of Timoshenko Sandwich Beam under Elastic Constraint[J]. Engineering Mechanics, 2018, 35(suppl 1):13-16+39(in Chinese)
[9] MACIEJ Taczała, RYSZARD Buczkowski, MICHAL Kleiber. Nonlinear Buckling and Post-Buckling Response of Stiffened FGM Plates in Thermal Environments[J]. Composites Part B,2017,109:238-247
[10] WU Helong, SRITAWAT Kitipornchai, YANG Jie. Thermal Buckling and Post-Buckling of Functionally Graded Graphene Nanocomposite Plates[J]. Materials and Design,2017,132:430-441
[11] 李科哲,赵彪,李晓娇,等. 新型复合材料功能梯度板热屈曲研究[J]. 上海航天,2016,33(5):71-76 LI Kezhe, ZHAO Biao, LI Xiaojiao, et al. Study on Thermal Buckling of Functionally Graded Cylindrical Shells[J]. Aerospace Shanghai, 2016, 33(5):71-76(in Chinese)
[12] 田新鹏,李金强,郭章新,等. 复合材料层合板在不同温度场中的热屈曲行为[J]. 太原理工大学学报,2016,47(2):264-269 TIAN Xinpeng, LI Jinqiang, GUO Zhangxin, et al. The Thermal Buckling Behavior of Composite Laminated Panels under Uniform and Non-Uniform Temperature Distribution[J]. Journal of Taiyuan University of Technlogy, 2016, 47(2):264-269(in Chinese)
[13] ZHANG Yang, LI Gen, LIEW K M. Thermomechanical Buckling Characteristic of Ultrathin Films Based on Nonlocal Elasticity Theory[J]. Composites Part B, 2018, 153:184-193
[14] 刘志民. 热环境中加筋壁板数值仿真[J]. 工程与试验,2017,57(3):22-26+88 LIU Zhimin. Numerical Simulation of Stiffened Panel in Thermal Environment[J]. Engineering & Test, 2017, 57(3):22-26+88(in Chinese)
[15] TRAN L V, THAI C H, NGUYEN X N. An Isogeometric Finite Element Formulation for Thermal Buckling Analysis of Functionally Graded Plates[J]. Finite Elem Anal, 2013, 73:65-76
[16] FARZAM A, HASSANI B. Thermal and Mechanical Buckling Analysis of FG Carbon Nanotube Reinforced Composite Plates Using Modified Couple Stress Theory and Isogeometric Approach[J]. Composite Structures, 2018, 206:774-790
[17] ZADEH E J, AZHARI M, BOROOMAND B. Thermal Buckling of Functionally Graded Skew and Trapezoidal Plates with Different Boundary Conditions Using the Element-Free Galerkin Method[J]. European Journal of Mechanics/A Solids, 2013, 42:18-26
[18] SHIAU Lechung Shiau, KUO Shihyao Kuo, CHEN Chengyuan. Thermal Buckling Behavior of Composite Laminated Plates[J]. Composite Structures, 2010, 92:508-514
[19] XU Yingjie, REN Shixuan, ZHANG Weihong, et al. Study of Thermal Buckling Behavior of Plain Woven C/SiC Composite Plate Using Digital Image Correlation Technique and Finite Element Simulation[J]. Thin-Walled Structures,2018,131:385-392
[20] GANAPATHI Manickam, ANIRUDH Bharath, ADITYA Narayan Das, et al. Thermal Buckling Behavior of Variable Stiffness Laminated Composite Plates[J]. Materials Today Communications, 2018,16:142-151
[21] 任青梅. 高超声速飞行器薄壁结构热屈曲行为研究进展[J]. 飞航导弹,2018(7):6-12 REN Qingmei. Advances in Thermal Buckling Behavior of Thin-Walled Structures of Hypersonic Aircraft[J]. Aerodynamic Missile Journal, 2018(7):6-12(in Chinese)