论文:2019,Vol:37,Issue(6):1184-1190
引用本文:
张博文, 黄铁球, 邢琰, 滕宝毅. 星球车导航与动力学联合仿真平台设计研究[J]. 西北工业大学学报
ZHANG Bowen, HUANG Tieqiu, XING Yan, TENG Baoyi. Design and Research Co-Simulation Platform of Navigation and Dynamics on Planetary Rovers[J]. Northwestern polytechnical university

星球车导航与动力学联合仿真平台设计研究
张博文1, 黄铁球1, 邢琰2, 滕宝毅2
1. 北京交通大学 机械与电子控制工程学院, 北京 100044;
2. 北京控制工程研究所, 北京 100190
摘要:
针对火星及其他星球探测复杂通过性任务使导航控制系统设计面临的困境,提出星球车导航与动力学联合仿真平台的总体设计思路。基于修正的Bekker理论模型,以MSC.ADAMS软件为基础,通过子程序二次开发,建立含松软土壤环境下轮壤接触星球车动力学模型;采用C++建立交互式并行仿真系统,协同调用动力学模型与导航控制模型并行解算形成联合仿真的闭环系统,实现导航控制系统与动力学模型的无缝链接和并行高效解算。选取合适土壤特性参数,给定导航指令,对星球车特殊工况,如车体抬升、抬轮、蠕动进行仿真,结果表明,平台能够真实实现星球车导航与动力学的联合仿真,为星球车导航控制系统的设计奠定基础。
关键词:    星球车    联合仿真    轮壤动力学    多体动力学   
Design and Research Co-Simulation Platform of Navigation and Dynamics on Planetary Rovers
ZHANG Bowen1, HUANG Tieqiu1, XING Yan2, TENG Baoyi2
1. School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China;
2. Beijing Institute of Control Engineering, Beijing 100190, China
Abstract:
The overall design idea of simulation platform of the planetary rover coupling navigation and dynamics is proposed to address the dilemma faced in the design of a navigation control system for Mars and other planetary exploration tasks. Based on the modified Bekker model, through subroutine secondary development, the dynamics model for the wheel-soil contact planetary rover in soft soil environment with the MSC.ADAMS software was established. Following the establishment of the interactive parallel simulation system via C++, the dynamic model worked in parallel collaboration with the navigation control system to resolve the closed-loop system where co-simulation was formed, achieving the seamless linkage between and parallel efficient operation of the navigation control system and the dynamic model. Simulation was conducted on the special working conditions of the planetary rover, such as body lift, wheel lift and creep, after suitable selection of soil characteristic parameters. The results showed that the platform enabled the dynamics simulation of the planetary rover to be completed, laying the foundation for designing the navigation control system of the planetary rover.
Key words:    planetary rover    coupling simulation    dynamics of terrain-vehicle    dynamics of multibody systems   
收稿日期: 2018-11-18     修回日期:
DOI: 10.1051/jnwpu/20193761184
通讯作者: 黄铁球(1971-),北京交通大学副教授,主要从事机械多体动力学研究。e-mail:tqhuang@bjtu.edu.cn     Email:tqhuang@bjtu.edu.cn
作者简介: 张博文(1994-),北京交通大学硕士研究生,主要从事机械多体动力学及星球车一体化仿真研究。
相关功能
PDF(2350KB) Free
打印本文
把本文推荐给朋友
作者相关文章
张博文  在本刊中的所有文章
黄铁球  在本刊中的所有文章
邢琰  在本刊中的所有文章
滕宝毅  在本刊中的所有文章

参考文献:
[1] 杨怀广, 丁亮, 高海波, 等. 星球车车轮原地转向沉陷试验及模型研究[J]. 机械工程学报, 2017, 53(8):99-108 YANG Huaiguang, DING Liang, GAO Haibo, et al. Experimental Study and Modeling of Wheel's Steering Sinkage for Planetary Exploration Rovers[J]. Journal of Mechanical Engineering, 2017, 53(8):99-108(in Chinese)
[2] YEN J, JAIN A, BALARAM J. ROAMS:Rover Analysis, Modeling and Simulation[C]//Proceedings of the Fifth International Symposium on Artificial Intelligence, Robotics and Automation in Space, 1999:249-254
[3] JAIN A, BALARAM J, CAMERON J, et al. Recent Developments in the ROAMS Planetary Rover Simulation Environment[C]//IEEE Aerospace Conference Proceedings, 2004:861-876
[4] PATEL N, ELLERY A, ALLOUIS E, et al. Rover Mobility Performance Evaluation Tool(RMPET):a Systematic Tool for Rover Chassis Evaluation via Application of Bekker Theory[C]//Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation, 2004:251-258
[5] BAUER R, LEUNG W, BARFOOT T. Development of a Dynamic Simulation Tool for the Exomars Rover[C]//Proceedings of the 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2005:1-8
[6] BAUER R, BARFOOT T, LEUNGW, et al. Dynamic Simulation Tool Development for Planetary Rovers[J]. International Journal of Advanced Robotic Systems, 2008, 5(3):311-314
[7] ZHOU F, ARVIDSON R E, BENNETT K. Simulations of Mars Rover Traverses[J]. Journal of Field Robotics, 2013, 31(1):141-160
[8] 黄铁球, 邢焱, 滕宝毅. 一种新的基于Adams与C/C++语言的模块化协同仿真模式[J]. 航天控制, 2011, 29(1):63-66 HUANG Tieqiu, XING Yan, TENG Baoyi. A New Mode of Co-Simulation Based on Adams and C/C++Language[J]. Aerospace Control, 2011, 29(1):63-66(in Chinese)
[9] 江磊, 郭建娟. 基于Vortex的月球车仿真技术[J]. 农业机械学报, 2012, 43(增刊1):352-356 JIANG Lei, GUO Jianjuan. Simulation Algorithm of Lunar Rover Based on Vortex[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(suppl 1):352-356(in Chinese)
[10] 徐亚伟, 陈建新, 刘良栋, 等. 松软土壤环境下月球车动力学与控制的仿真工具[J]. 空间控制技术与应用, 2008, 34(6):52-57 XU Yawei, CHEN Jianxin, LIU Liangdong, et al. A Simulation Tool for Dynamics and Control of a Lunar Rover in Soft Soil Environment[J]. Aerospace Contrd and Application, 2008, 34(6):52-57(in Chinese)
[11] 邵铮. 软质地面环境下月球车虚拟仿真平台关键技术研究[D]. 沈阳:东北大学, 2008 SHAO Zheng. Study on Virtual simulation Platform of Tyre-Soil Interaction for Lunar Rover Based on Virtual Reality Technology[D]. Shenyang, Northeastern University, 2008(in Chinese)
[12] 丁亮. 月/星球车轮地作用地面力学模型及其应用研究[D]. 哈尔滨:哈尔滨工业大学, 2010 DING Liang. Wheel-Soil Interaction Terramechanics for Lunar/Planetary Exploration Rovers:Modeling and Application[D]. Haerbin, Harbin Institute of Technology, 2010(in Chinese)
[13] Bekker M G. 地面-车辆系统导论[M]. 《地面-车辆系统导论》翻译组, 译. 北京:机械工业出版社, 1978 BEKKER M G. Introduction to Terrain-Vehicle Systems[M]. Translation Group of Introduction to Terrain-Vehicle Systems, Translator. Beijing, China Machine Press, 1978(in Chinese)
[14] WONG J Y, REECE A R. Prediction of Rigid Wheel Performance Based on Analysis of Soil-Wheel, Stresses, PartⅠ:Performance of Driven Rigid Wheels[J]. Journal of Terramechanics, 1967, 4(1):81-98
[15] 刘兴杰, 苏波, 江磊, 等. 火星表面土壤力学性能参数研究[J]. 载人航天, 2016, 22(4):459-465 LIU Xingjie, SU Bo, JIANG Lei, et al. Research on Soil Mechanical Properties of Martian Surface Soil[J]. Manned Spaceflight, 2016, 22(4):459-465(in Chinese)