论文:2019,Vol:37,Issue(6):1095-1101
引用本文:
黄文斌, 杨涓, 孟海波, 夏旭, 付瑜亮, 胡展. 结构和工质对ECR离子源引出束流的影响规律研究[J]. 西北工业大学学报
HUANG Wenbin, YANG Juan, MENG Haibo, XIA Xu, FU Yuliang, HU Zhan. Study on Effect of Structure and Propellant on Beam of ECR Ion Source[J]. Northwestern polytechnical university

结构和工质对ECR离子源引出束流的影响规律研究
黄文斌, 杨涓, 孟海波, 夏旭, 付瑜亮, 胡展
西北工业大学 航天学院, 陕西 西安 710072
摘要:
提高离子源引出束流是提高电子回旋共振离子推力器(ECRIT)性能的重要途径,而离子迁移距离、磁路结构和气体工质等因素对引出束流有着密切的影响。利用具有不同栅极安装位置和磁体长度的离子源,通过实验研究,分析磁路、离子的迁移距离以及工质对引出束流的影响。实验结果表明:磁体长度过短会引起ECR区的不连续分布从而造成离子源性能大幅度下降,增加磁体长度在高流量下有利于提高栅极引出束流,低流量下会使束流降低;栅极安装环长度对引出束流的影响规律与离子源的磁路结构和工作状态有关,在气体流量较低时,更长的安装环有利于提高引出束流,高气体流量条件下,不同的磁路结构会使栅极安装环对引出束流产生不同的影响规律;氙工质可以明显提高低流量条件下离子源的引出束流和放电稳定性,但在高流量下受进气位置影响,中性粒子过于聚集而造成自由电子能量积累受到影响,从而会出现束流下降的现象。
关键词:    电子回旋共振    束流引出    磁路结构    栅极安装环    多工质   
Study on Effect of Structure and Propellant on Beam of ECR Ion Source
HUANG Wenbin, YANG Juan, MENG Haibo, XIA Xu, FU Yuliang, HU Zhan
School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
To increase the ion current from the ion source is an important way to improve the performance of the electron cyclotron resonance ion thruster(ECRIT). The ion migration distance, magnetic topology and propellant have a close influence on the extracting ion beam. This influence is studied through both magnetic circuit structure calculation and experiments, by using an ion source with different gate mounting positions and magnet lengths. Experimental results show that the distribution of the ECR region will be discontinuous when the length of the magnet is too short. This will greatly reduce the performance of the ion source. To increase the length of the magnet is beneficial to the beam emission at high gas flow rate, but it reduces the beam emission at low gas flow rate. The effect of the ion migration distance on the ion beam is related to the plasma density in the ion source. When the gas flow rate is low, a longer gate mounting ring is beneficial to increase the ion current. When the gas flow rate is high, the different magnetic topology will cause the gate mounting ring which influences on the ion current. At low gas flow conditions, xenon gas can significantly improve the discharge stability of the ion source and increase the ion current. However, at high gas flow rate, the concentration effect of the neutral particles is too strong that affects the energy accumulation process of the free electrons. This would cause the decrease in the ion current.
Key words:    electron cyclotron resonance    ion beam extraction    magnetic topology    gate mounting ring    various propellants   
收稿日期: 2018-11-22     修回日期:
DOI: 10.1051/jnwpu/20193761095
基金项目: 国家自然科学基金(11475137)资助
通讯作者: 杨涓(1963-),女,西北工业大学教授,主要从事ECR离子推力器研究。e-mail:yangjuan@nwpu.edu.cn     Email:yangjuan@nwpu.edu.cn
作者简介: 黄文斌(1993-),西北工业大学硕士研究生,主要从事ECR离子推力器研究。
相关功能
PDF(2237KB) Free
打印本文
把本文推荐给朋友
作者相关文章
黄文斌  在本刊中的所有文章
杨涓  在本刊中的所有文章
孟海波  在本刊中的所有文章
夏旭  在本刊中的所有文章
付瑜亮  在本刊中的所有文章
胡展  在本刊中的所有文章

参考文献:
[1] IZUMI Takehiro, KOIZUMI Hiroyuki, YAMAGIWA Yoshiki, et al. Performance of Miniature Microwave Discharge Ion Thruster for Drag-Free Control[R]. AIAA-2012-4022
[2] NISHIYAMA I, TSUKIZAKI R, NISHIYAMA K, et al. Experimental Study for Enhancement Thrust Force of the ECR Ion Thruster μ10[R]. AIAA-2014-3913
[3] NISHIYAMA Kazutaka, KUNINAKA Hitoshi, NAKAI Tatsuya. Two-Dimensional Characterization of Microwave E-Fields and Beam Profiles of the ECR Ion Thruster μ20[R]. IEPC-2007-25
[4] KAWAHARA Hiroki, ASAKAWA Jun, YAGINUMA Kazuya, et al. Ground Experiment for the Small Unified Propulsion System:I-COUPS Installed on the Small Space Probe:PROCYON[R]. IEPC-2015-460p
[5] YANG Juan, SHI Feng, JIN Yizhou, et al. Experiment Study of an Electron Cyclotron Resonant Ion Source Based on a Tapered Resonance Cavity[J]. Physics of Plasmas, 2013, 20(12):123505-123507
[6] YANG Juan, SHIGERU Yokota, RYOTARO Kaneko, et al. Diagnosing on Plasma Plume from Xenon Hall Thruster with Collisional-Radiative Model[J]. Physics of Plasmas, 2010, 17(10):103504-103508
[7] YANG Juan, XU Yingqiao, MENG Zhiqiang, et al. Effect of Applied Magnetic Field on a Microwave Plasma Thruster[J]. Physics of Plasmas, 2008, 15(2):023503-023507
[8] YANG Juan, XU Yingqiao, ZHU Bing, et al. Experimental Study on the Characteristics of Low Power Microwave Plasma Jet within Local Vacuum Environment[J]. Physics of Plasmas, 2007, 14(9):093508-093510
[9] 汤明杰. 微型电子回旋共振离子推力器电磁计算分析和束流引出实验研究[D]. 西安:西北工业大学, 2016 TANG Mingjie. Electromagnetic Calculation Analysis and Ion Extraction Experiment of Micro Electron Cyclotron Resonance Ion Thruster[D]. Xi'an, Northwestern Polytechnical University, 2016(in Chinese)
[10] 汤明杰, 杨涓, 金逸舟, 等. 微型电子回旋共振离子推力器离子源结构优化实验研究[J]. 物理学报, 2015, 64(21):215202-215207 TANG Mingjie, YANG Juan, JIN Yizhou, et al. Experimental Optimization in Ion Source Configuration of a Miniature Electron Cyclotron Resonance Ion Thruster[J]. Acta Physica Sinica, 2015, 64(21):215202-215207(in Chinese)
[11] 金逸舟, 杨涓, 冯冰冰, 等. 不同磁路结构电子回旋共振离子源引出实验[J]. 物理学报,2016,65(4):045201-045209 JIN Yizhou, YANG Juan, FENG Bingbing, et al. Ion Extraction Experiment for Electron Cyclotron Resonance Ion Source with Different Magnetic Topology[J]. Acta Physica Sinica, 2016,65(4):045201-045209(in Chinese)
[12] 利伯曼迈克尔A. 等离子体放电原理与材料处理[M]. 蒲以康,译, 北京:科学出版社,2011 Lieberman Michael A. Principles of Plasma Discharges and Materials Processing[M]. PU Yikang, Translator, Beijing, Science Press, 2011(in Chinese)