论文:2019,Vol:37,Issue(5):1018-1027
引用本文:
关巍, 孙静海, 李翔, 任志浩. 无人船航向闭环成形滤波L2增益鲁棒控制[J]. 西北工业大学学报
GUAN Wei, SUN Jinghai, LI Xiang, REN Zhihao. Unmanned Surface Vessel Steering L2 Gain Robust Control Based on Closed-Loop Shaping Filter[J]. Northwestern polytechnical university

无人船航向闭环成形滤波L2增益鲁棒控制
关巍1,2, 孙静海1, 李翔1, 任志浩2
1. 大连海事大学 航海学院, 辽宁 大连 116026;
2. 大连理工大学 海岸和近海工程国家重点实验室, 辽宁 大连 116023
摘要:
将闭环成形滤波方法引入到L2增益鲁棒控制器设计策略中并对规划控制策略下的无人船航向系统进行控制器设计,借鉴了现代控制理论中的L2增益鲁棒控制理论和Lyapunov设计方法严谨性特点,并利用经典频域控制理论中的闭环成形滤波的概念,将时域控制器设计与频域控制器设计策略相融合,从实际应用角度出发,完成了规划控制策略下的无人船航向器的设计。最后在仿真实验中,采用所提出的控制器设计策略分别和几种常见实用的控制器在多向不规则波条件下进行仿真对比,证明了所提出的航向控制器具有结构简捷高效,控制参数物理意义明确,综合控制性能好的优势。
关键词:    无人船    规划控制策略    航向控制    闭环成形滤波    L2增益控制    控制器设计   
Unmanned Surface Vessel Steering L2 Gain Robust Control Based on Closed-Loop Shaping Filter
GUAN Wei1,2, SUN Jinghai1, LI Xiang1, REN Zhihao2
1. Navigation College, Dalian Maritime University, Dalian 116026, China;
2. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116023, China
Abstract:
With the introduction of the closed-loop shaping filtering method into the L2 gain robust controller design strategy, a nonlinear robust steering controller for unmanned surface vessel is designed under the planning and control strategy in this paper. The rigorous mathematical analysis and synthesis characteristics of the L2 gain robust control theory and the Lyapunov design method are fully utilized in the controller design process. Furthermore, the concept of the closed-loop shaping filtering based on the classical closed-loop control theory is taken into the controller design strategy. Therefore, the time domain controller design methods integration with the frequency domain controller design strategy are merged togehter to complete the unmanned surface vessel steering controller design in the view of practical engineering and planning and control strategy. Finally, compared with several practical controller design methods in the multi-direction irregular waves, the simulation results show that the proposed steering controller design strategy has concise structure, distinctive physic meanings of the controller parameters and superior comprehensive control performance.
Key words:    unmanned surface vessel    planning and control    ship steering control    closed-loop shaping filter    L2 gain control    controller design   
收稿日期: 2018-10-09     修回日期:
DOI: 10.1051/jnwpu/20193751018
基金项目: 国家自然科学基金(51409033)、辽宁省自然科学基金(201602093)与中央高校基本科研业务费(3132016315)资助
通讯作者:     Email:
作者简介: 关巍(1982-),大连海事大学副教授、博士,主要从事无人船规划控制理论研究。
相关功能
PDF(2149KB) Free
打印本文
把本文推荐给朋友
作者相关文章
关巍  在本刊中的所有文章
孙静海  在本刊中的所有文章
李翔  在本刊中的所有文章
任志浩  在本刊中的所有文章

参考文献:
[1] LOKUKALUGE P P, VICTOR F F P. SANTOS, et al. Experimental Evaluations on Ship Autonomous Navigation and Collision Avoidance by Intelligent Guidance[J]. IEEE Journal of Oceanic Engineering, 2015, 40(2):374-387
[2] 罗伟林, 邹早建, 李铁山. 船舶航向非线性系统鲁棒跟踪控制[J]. 控制理论与应用,2009,26(8):893-895 LUO Weilin, ZOU Zaojian, LI Tieshan. Robust Tracking Control of Nonlinear Ship Steering[J]. Control Theory & Applications, 2009, 26(8):893-895(in Chinese)
[3] DU J, ABRAHAM A, YU S, et al. Adaptive Dynamic Surface Control with Nussbaum Gain for Course-Keeping of Ships[J]. Engineering Applications of Artificial Intelligence, 2014, 27(1):236-240
[4] ZHANG X, ZHANG G. Design of Ship Course-Keeping Autopilot Using a Sine Function-Based Nonlinear Feedback Technique[J]. Journal of Navigation, 2016, 69(2):246-256
[5] ZHANG Q, ZHANG X K, IM N K. Ship Nonlinear-Feedback Course Keeping Algorithm Based on Mmg Model Driven by Bipolar Sigmoid Function for Berthing[J]. International Journal of Naval Architecture & Ocean Engineering, 2017, 9(5):525-536
[6] Piotr Borkowski, Zenon Zwierzewicz. Ship Course-Keeping Algorithm Based on Knowledge Base[J]. Intelligent Automation & Soft Computing, 2011, 17(2):149-163
[7] LIU Z, GU W, GAO D. Ship Course Keeping Using Eigenvalue Decomposition Adaptive Sliding Mode Control[C]//Techno-Ocean, 2017:687-691
[8] DO K D, JIANG Z P, PAN J. Underactuated Ship Global Tracking Under Relaxed Conditions[J]. IEEE Trans on Automatic Control, 2015, 47(9):1529-1536
[9] NICOLAU V, MIHOLCA C, AIORDACHIOAIE D, et al. QFT Autopilot Design for Robust Control of Ship Course-Keeping and Course-Changing Problems[J]. Journal of Control Engineering & Applied Informatics, 2006, 7(1):50-54
[10] LIU S, YU P, LI Y Y, et al. Application of Hinfinite Control to Ship Steering System[J]. Journal of Marine Science and Application, 2006, 5(1):6-11
[11] DAS S, BHATT A, TALOLE S E. UDE Based Backstepping Design for Ship Autopilot[C]//International Conference on Industrial Instrumentation and Control, 2015:417-422
[12] LEI Z, GUO C. Disturbance Rejection Control Solution for Ship Steering System with Uncertain Time Delay[J]. Ocean Engineering, 2015, 95:78-83
[13] 张显库, 贾欣乐. 船舶运动控制[M]. 北京:国防工业出版社, 2006 ZHANG Xianku, JIA Xinle. Ship Motion Control[M]. Beijing, National Defence Industry Press, 2006(in Chinese)
[14] DU P, OUAHSINE A, TOAN K T, et al. Simulation of Ship Maneuvering in a Confined Waterway Using a Nonlinear Model Based on Optimization Techniques[J]. Ocean Engineering, 2017, 142:194-203
[15] FAN Y, MU D, ZHANG X, et al. Course keeping Control Based on Integrated Nonlinear Feedback for a USV with Pod-Like Propulsion[J]. Journal of Navigation, 2018:71(4):878-898